Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Hà
Xem chi tiết
Nguyễn Phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2021 lúc 20:46

Bạn ơi, bạn ghi lại đề đi bạn. Khó hiểu quá!

Nhan Thanh
31 tháng 7 2021 lúc 21:14

Đề là \(x+y-\sqrt{xy}=3\) với \(\sqrt{x+1}+\sqrt{y-1}=4\) pk bạn?

Nhan Thanh
31 tháng 7 2021 lúc 22:37

Điều kiện: \(\left\{{}\begin{matrix}xy>0\\x,y\ge-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\x+2+2\sqrt{\left(x+1\right)\left(y+1\right)}=16\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\x+2+2\sqrt{xy+x+y+1}=16\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}S=x+y\\P=xy\end{matrix}\right.\) ( ĐK: \(S^2\ge4P\) ), khi đó hệ phương trình trở thành:

\(\left\{{}\begin{matrix}S-\sqrt{P}=3\\S+2+2\sqrt{S+P+1}=16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}P=\left(S-3\right)^2\left(S\ge3\right)\\2\sqrt{S+\left(S-3\right)^2+1}=14-S\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\le S\le14\\P=\left(3-S\right)^2\\4\left(S^2-5S+10\right)=196-28S+S^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\le S\le14\\P=\left(3-S\right)^2\\3S^2+8S-156=0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}S=6\\P=9\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x+y=6\\xy=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=6\\x^2-x+9=0\end{matrix}\right.\) \(\Leftrightarrow x=y=3\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(3;3\right)\)

 

 

 

Pi Chan
Xem chi tiết
Hạ Mộc
Xem chi tiết
Chu Thanh Hoa
26 tháng 12 2020 lúc 14:36

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Khách vãng lai đã xóa
Minh An
Xem chi tiết
toan pham
Xem chi tiết
Vũ Phương Quỳnh
Xem chi tiết
Huy Huynh
4 tháng 6 2016 lúc 22:00

\(\sqrt{\sqrt{5}-\sqrt{3x}}=\sqrt{8+\sqrt{60}}\)

Công Chúa Anime
2 tháng 7 2016 lúc 20:57

\(\sqrt{\sqrt{5-\sqrt{3x}=}\sqrt{8+\sqrt{60}}}\) k mk nha

Phúc Ong
Xem chi tiết
TRần Lê Tiến Đạt
Xem chi tiết