Cho tam giác LAC cân L. Hai đường trung tuyến xuất phát từ A và C cắt nhau tại K . CMR: LK vuông góc với AC
Cho tam giác ABC cân tại A, Trung tuyến AM. Vẽ MH vuông góc vs AB tại H MK vuông góc vs AC tại K. CMR
a) BH = CK
b) AM kaf đường trung trực của HK
c) Từ B và C kẻ đường thẳng vuông góc vs AB và AC , chúng cắt nhau tại D . CMR A, M, D thẳng hàng
cho tam giác ABC vuông cân tại A, M thuộc AC. Gọi I,K thứ tự là trung điểm của BM,AC. Qua A kẻ đường vuông góc với IK, qua C kẻ đường vuông góc với AC, chúng cắt nhau tại H. CMR: tam giác MCH vuông cân
đề sai rồi
QUA C KẺ ĐƯỜNG VUÔNG GÓC VỚI AC, CHÚNG CẮT NHAU TẠI H
2 ĐIỂM C VÀ H TRÙNG NHAU thì sao lại có
CMR TAM GIÁC MHC VUÔNG CÂN
cho tam giác ABC vuông cân tại a , các trung tuyến BM,CN cắt nhau tại O
a, tam giác BCM = tam giác CBN
b, AO vuông góc BC
c, Từ A và N lần lượt kẻ AK , NH vuông góc với BM ( K,H thuộc BM ) Chứng minh tam giác AKH vuông cân và CH = AC
a, tam giác ABC cân tại A (gt)
=> AB = AC (Đn)
có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)
=> AN = AM = BN = CM
xét tam giác NBC và tam giác MCB có : BC chung
^ABC = ^ACB do tam giác ABC cân tại A (Gt)
=> tam giác NBC = tam giác MCB (c-g-c) (1)
b, (1) => ^KBC = ^KCB (đn)
=> tam giác KBC cân tại K (dh)
c, có tam giác ABC cân tại A (gt) => ^ABC = (180 - ^BAC) : 2 (tc)
có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)
=> ^ABC = ^ANM mà 2 góc này đồng vị
=> MN // BC (đl)
Cho tam giác ABC cân tại A, vẽ trung tuyến AM. Từ M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc với AC tại F.
a, Chứng minh: Tam giác BEM=Tam giác CFM.
b, Chứng minh AM là trung trực của EF.
c, Từ B kẻ đường vuông góc với AB tại B, từ C kẻ đường vuông góc với AC tại C, hai đường thẳng này cắt nhau tại D. Chứng minh rằng ba điểm A,D,M thẳng hàng
a) Xét tam giác BEM và tam giácCFM
có:BM=MC(gt)
góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)
b)
Xét tam giác vg AEM va t/g vg AFM
có:EM=MF(t/g BEM=t/gAFM)
AM là cạnh chung
->t/g AEM =t/g AFM( c/ huyền -c.góc vg)
->AE=AF(2 cạnh tương ứng)
Xét tam giác AEI và t/g AFI
có:MF=EM(t/g BEM= t/g CFM)
AM là cạnh chung
AF=AE(C/ m trên)
->t/g AEI =t/g AFI(c-c-c)
->EI = IF(2 cạnh tương ứng)
->góc AIE= góc AIF(2 tương ứng)
=>AE là đường trung trực của EF
c(mik ko pt lm)
a và b bạn Hương Sơn
c) Ta có:
\(\Delta ABC\)cân
có AM là đường trung tuyến
=> AM cũng là đường trung trực
=> \(AM\perp BC\)
=> AM = 90 độ
Vì \(\Delta ABC\)cân
=> Góc ABM = góc ACM (1)
mà Góc ABD = góc ACD = 90 độ (2)
Từ (1) và (2) => Góc MBD = góc MCD
Xét \(\Delta DMB\)và \(\Delta DMC\)có :
DM : cạnh chung (1)
Góc MBD = góc MCD ( chứng minh trên ) (2)
BM = MC ( vì AM là đường trung tuyến của tam giác ABC ) (3)
Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)
=> Góc CMD = góc BMD ( cặp góc tương ứng)
Mà Góc CMD + góc BMD = 180 độ
=> Góc CMD = BMD = 180 : 2 = 90 độ
Vì Góc AMC = 90 độ ( vì AM là đường trung trực)
và góc CMD = 90 độ
=> AMC + CMD = AMD
=> 90 + 90 = AMD
=> AMD = 180 độ
=> Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)
Chúc bạn học tốt !
Câu b của bạn Dương Thị Hương Sơn dài. Mình làm cách khác ngắn hơn:
\(\Delta BEM=\Delta CFM\)
=> EB=FC, EM=FM
Ta có: AB-EB= AC - FC hay AE=AF
=> A nằm trên đường trung trực của EF (1)
Ta lại có: EM=FM
=> M nằm trên đường trung trực của EF (2)
Từ (1) và (2) suy ra: đpcm
^-^ Chúc các bạn học tốt. k ủng hộ cho mk nhé cảm ơn các bạn.
cho tam giác ABC cân tại A. Vẽ trung tuyến AM. Từ M kẻ ME vuông góc với AB tại E. Kẻ MF vuông góc với AC tại F.
a, Chứng minh tam giác BEM=tam giác CFM
b,AM là trung trực của EF
c,Từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D. Chứng minh A,M,D thẳng hàng.
Cho tam giác ABC cân tại A,2 đường trung tuyến BM và CN cắt nhau tại I . Chứng Minh :
A) BM=CN
B) tam giác IBC cân
C) AI là trung tuyến
D) Qua B kẻ Bx vuông góc với AB , qua C kẻ Cy vuông góc với AC
Bx cắt Cy tại K . Chứng minh rằng A;I;K thằng hàng
cho tam giác ABC vuông cân tại a , các trung tuyến BM,CN cắt nhau tại O
a, tam giác BCM = tam giác CBN
b, AO vuông góc BC
c, Từ A và N lần lượt kẻ AK , NH vuông góc với BM ( K,H thuộc BM ) Chứng minh tam giác AKH vuông cân và CH = AC
a)Xét ΔBCM và ΔCBN có:
BC chung
góc NBC=góc MCB(ΔABC cân)
BN=MC (gt)
⇨ΔBCM=ΔCBN (c-g-c)
⇨NC=MB (2 cạnh tương ứng)
cho tam giác ABC vuông cân tại a , các trung tuyến BM,CN cắt nhau tại O
a, tam giác BCM = tam giác CBN
b, AO vuông góc BC
c, Từ A và N lần lượt kẻ AK , NH vuông góc với BM ( K,H thuộc BM ) Chứng minh tam giác AKH vuông cân và CH = AC
a: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
BC chung
=>ΔNBC=ΔMCB
b: ΔNBC=ΔMCB
=>góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
mà AB=AC
nên AO là trung trực của BC
cho tam giác ABC vuông tại A, I là trung điểm AC. Từ I kẻ đường thẳng vuông góc với BC và từ C kẻ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau tại D. CMR AD vuông góc với BI