tìm n thuộc số tự nhiên
n + 5 chia hết cho n + 1
n+9 chia hết cho n-1
2n + 5chia het cho n + 2
Tìm n thuộc N sao cho: 5chia hết cho (n-2) ,(n+6) chia hết cho (n+2)
Tìm n thuộc N
a, n+3 chia hết cho n
b,35 - 12n chia hết cho n ( n < 3)
c, 16 - 3n chia hết cho n + 4 ( n < 6 )
d,5n + 2 chia hết cho 9 - 2n ( n < 5 )
e , 6n + 9 chia hết cho 4n - 1 ( n lớn hơn hoặc bằng 1 )
a) n + 3 chia hết cho n
Vì n chia hết cho n nên để n + 3 chia hết cho n thì 3 chia hết cho n
Từ đó suy ra : n \(\in\)Ư ( 3 ) = { 1 ; 3 }
b) 35 - 12n chia hết cho n ( n < 3 )
Vì 12n chia hết cho n nên để 35 - 12n chia hết cho n thì 35 chia hết cho n
từ đó suy ra : n \(\in\)Ư ( 35 ) = { 1 ; 5 ; 7 ; 35 }
Mà n < 3 nên n = 1
Vậy n = 1
c) 16 - 3n chia hết cho n + 4 ( n < 6 )
theo bài ra ta có :
16 - 3n chia hết cho n + 4
28 . ( 3n + 12 ) chia hết cho n + 4
28 - 3 . ( n + 4 ) chia hết cho n + 4
vì 3 . ( n + 4 ) chia hết cho n + 4 nên để 28 - 3 . ( n + 4 ) chia hết cho n + 4 thì 28 chia hết cho n + 4
Từ đó suy ra : n + 4 \(\in\)Ư ( 28 ) = { 1 ; 2 ; 4 ; 7 ; 14 ; 28 }
mà n < 6 nên n = { 1 ; 2 ; 4 }
vậy n = { 1 ; 2 ; 4 }
d) 5n + 2 chia hết cho 9 - 2n ( n < 5 )
ta có : 9 - 2n chia hết cho 9 - 2n nên 5 . ( 9 - 2n ) chia hết cho 9 - 2n ( 1 )
Vì 5n + 2 chia hết cho 9 - 2n nên 2 . ( 5n + 2 ) chia hết cho 9 - 2n ( 2 )
Từ ( 1 ) và ( 2 ) ta có :
5 . ( 9 - 2n ) + 2 . ( 5n + 2 ) chia hết cho 9 - 2n
=> 45 - 10n + 10n + 4 chia hết cho 9 - 2n
45 + 4 chia hết cho 9 - 2n
49 chia hết cho 9 - 2n
để 5n + 2 chia hết cho 9 - 2n thì 49 chia hết cho 9 - 2n
Vậy 9 - 2n \(\in\)Ư ( 49 ) = { 1 ; 7 ; 49 }
Vì 9 - 2n \(\le\)9 nên 9 - 2n \(\in\){ 1 ; 7 }
\(\Rightarrow\orbr{\begin{cases}9-2n=7\\9-2n=1\end{cases}\Rightarrow\orbr{\begin{cases}n=1\\n=4\end{cases}}}\)
a) n + 3 chia hết cho n ( n thuộc N )
Ta có : n chia hết cho n
n + 3 chia hết cho n
=> 3 chia hết cho n
=> n thuộc Ư ( 3 )
=> n thuộc { 1 ; 3 }
Tìm n thuộc N
a, n+3 chia hết cho n
b,35 - 12n chia hết cho n ( n < 3)
c, 16 - 3n chia hết cho n + 4 ( n < 6 )
d,5n + 2 chia hết cho 9 - 2n ( n < 5 )
e , 6n + 9 chia hết cho 4n - 1 ( n lớn hơn hoặc bằng 1 )
a)n+3\(⋮\)n b)35-12n\(⋮\)n
n\(⋮\)n 12n\(⋮\)n
n+3-n\(⋮\)n 35-12n-12n\(⋮\)n
3\(⋮\)n 35\(⋮\)n
\(\Rightarrow\)n={1;3} vì n<3 nên :
\(\Rightarrow\)n={1}
Làm tượng tự với các câu sau
Có n + 3 chia hết cho n
=> n chia hết cho n
=> 3 chia hết cho n
=> n thuộc Ư(3)
n = { 1 ; 3}
Tìm n thuộc N* để:
a) n+10 chia hết cho 2n + 1
b) n+19 chia hết cho 9-n
c) n2 + 23 chia hết cho n-2
d) n+4 chia hết cho n2 -1
e) 12n + 5 chia hết cho 8n-1
Tìm n thuộc N* để:
a) n+10 chia hết cho 2n + 1
b) n+19 chia hết cho 9-n
c) n2 + 23 chia hết cho n-2
d) n+4 chia hết cho n2 -1
e) 12n + 5 chia hết cho 8n-1
tìm STN n để
a, 4n-5chia hết cho 12n
b, 25n+3 chia hết cho 53
bai1 : tim so tu nhien N de
a: n+8 chia het cho n
b: 143-12n chia het cho n (n<12)
c: n+9 chia het cho n+4
đ: 3n+40 chia hết cho n+4
e: 5n+2 chia het cho n+9
a.n chia het cho n nen 8 chia het cho n => n=1,2,4,8
b,12n chia het n nen 143 chia het n=> n=1,11,13,143
c)n+9=n+4+5=> 5 chia het n+4
n+4 1 5
n ko 1
d.3(n+4) +40-12=3(n+4)+28 nen 28 chia het n+4
e.5(n+2)+9-10=5(n+2)-1 nen 1 chia het n+9
tik minh nha
1. CMR
a, 1+11+11^2+.....+11^9 chia hết cho 10
b, Số gồm 27 chữ số 1 chia het cho 27
2.CMR
a, 5^n-1 chia hết cho 4(n thuộc N)
b, n^2+n+1 ko chia hết cho 5(n thuộc N)
Chứng minh rằng A=11.12.13.14+21.22.23.24.25 chia hết cho 5,9,15,77
Chứng minh rằng B=(2012^9+2012^8+2012^7-2012^6) chia hết cho 2013
Chứng minh rằng A= 7+7^2+7^3+…+7^2000 chia hết cho 8
Tìm n thuộc tập hợp N để
a, n+6 chia hết cho n b,4n+5chia hết cho n. c, n+5 chia hết cho n+1. đ, 3n + 4 chia hết cho n-1