\(\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+...+\frac{2}{17x19}\)
\(\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+....+\frac{2}{99x101}\)
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{99\cdot101}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{3}-\frac{1}{101}\)
\(=\frac{98}{303}\)
Tích mk nha bn !!!! ^_^
\(\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}+\frac{2}{11x13}+\frac{2}{13x15}\)Tính
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{3}-\frac{1}{15}\)
\(=\frac{4}{15}\)
Chúc bn hok giỏi !!!!!!!!! ^_^
Giúp mình vs ! tìm tổng của E nhé
\(E=\frac{2}{3x5}+\frac{2}{5x7}+.....+\frac{2}{17x19}\)
\(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{17\times19}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{17}-\frac{1}{19}\)
=\(\frac{1}{3}-\frac{1}{19}=\frac{19}{57}-\frac{3}{57}=\frac{19-3}{57}=\frac{16}{57}\)
Tìm y biết:
\(\left(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}\right)\cdot y=\frac{2}{3}\)
\(\left(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}\right).y=\frac{2}{3}\)
\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)y=\frac{2}{3}\)
\(\left(1-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{10}{11}.y=\frac{2}{3}\)
\(y=\frac{2}{3}.\frac{11}{10}\)
\(y=\frac{22}{30}\)
\(\left(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}\right).y=\frac{2}{3}\)
\(\frac{10}{11}.y=\frac{2}{3}\)
\(y=\frac{11}{15}\)
\(\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).y=\frac{2}{3}\)
\(\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{11-9}{9.11}\right).y=\frac{2}{3}\)
\(\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\left(\frac{1}{1}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{10}{11}.y=\frac{2}{3}\)
\(y=\frac{2}{3}:\frac{10}{11}\)
\(y=\frac{11}{15}\)
Tính nhanh
a) \(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}\)
làm chi tiết hộ mình nhé nhưng nhớ là tính nhanh
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\)
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\)
\(=1+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\)
~ Hok tốt ~
\(\frac{2^2}{1x3}\)x\(\frac{4^{^2}}{3x5}\)x\(\frac{6^2}{5x7}\)x\(\frac{8^2}{7x9}\)
\(\frac{2^2}{1x3}\)x \(\frac{4^2}{3x5}\)x \(\frac{6^2}{5x7}\) x \(\frac{8^2}{7x9}\)
= \(\frac{4}{3}\)x \(\frac{16}{15}\)x \(\frac{36}{35}\)x \(\frac{64}{63}\)
= \(1.486077098\)
tính nhanh
\(\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}+\frac{2}{11x13}+\frac{2}{13x15}+\frac{2}{1x2}+\frac{2}{2x3}+\frac{2}{3x4}+...+\frac{2}{8x9}+\frac{2}{9x10}\)
giải hẳn ra cho mình ai làm đúng mình tk cho nhé !!!
\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{9.10}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{15}+2\left(1-\frac{1}{10}\right)\)
\(=\frac{4}{15}+\frac{9}{5}\)
\(=\frac{31}{15}\)
Bài làm :
Ta có :
\(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{13\times15}+\frac{2}{1\times2}+\frac{2}{2\times3}+...+\frac{2}{9\times10}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{3}-\frac{1}{15}+2\left(1-\frac{1}{10}\right)\)
\(=\frac{31}{15}\)
Tìm X : (\(\frac{2}{3x5}\)+ \(\frac{2}{5x7}\)+ ... + \(\frac{2}{17x19}\)) x 57 - 2 x (X - 1) = 10
\(\left(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{17\times19}\right)\times57-2\times\left(x-1\right)=10\)
\(\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{17}-\frac{1}{19}\right)\times57-2\times\left(x-1\right)=10\)
\(\left(\frac{1}{3}-\frac{1}{19}\right)\times57-2\times\left(x-1\right)=10\)
\(\frac{16}{57}\times57-2\times\left(x-1\right)=10\)
\(16-2\times\left(x-1\right)=10\)
\(2\times\left(x-1\right)=16-10\)
\(2\times\left(x-1\right)=6\)
\(x-1=6:2\)
\(x-1=3\)
\(x=3+1\)
\(x=4\)
1/3x5+1/5x7+1/7x9...........1/17x19+1/x(x-2)
=(2-1)*(2+1)+(4-1)*(4+1)+ ...+(2n-1)*(2n+1) =(2^2-1)+(4^2-1)+...+(4n^2-1) =(2^2+4^2+...+4n^2)-(1+1+...+1) =4(1^2+2^2+...n^2)-n n(n+1)(2n+1)/6: 1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6n^2=n 1x3+3x5+5x7+7x9+...+17x19 =4(1^2+2^2+...n^2)-n =4*n(n+1)(2n+1)/6-n; n=10,1x3+3x5+5x7+7x9+...+17x19=1530