Find all the least positive integer n such that n+1, 6n +1, 20n+1 are all perfect squares.
Determine all positive intergers n with at least 4 factors such that n is the sum of the squares of its 4 smallest factors.
Note: Solving in English
1) ABC is a triangle where M is the midpoint of segment BC.
MD and ME are two bisectors of triangles AMB and AMC respectively.
If AM= m; BC = a . Then DE = ???
2)\(\dfrac{1}{\left(x+29\right)^2}+\dfrac{1}{\left(x+30\right)^2}=\dfrac{5}{4}\)
What is the product of all real solutions to the equation above?
3) The sum of all possible natural numbers n such that
\(n^2+n+1589\) is a perfect square is.....
4) Given that x is a positive integer such that x and x+99 are perfect squares
The sum of integer x is ...
5)The operation @ on two numbers produces a number equal to their sum minus 2. The value of
(...((1@2)@3....@2017)
6) Given f(x)=\(\dfrac{x^2}{2x-2x^2-1}\)
=> \(f\left(\dfrac{1}{2016}\right)+f\left(\dfrac{2}{2016}\right)+f\left(\dfrac{3}{2016}\right)+...+f\left(\dfrac{2016}{2016}\right)\)
Các bn giúp mk vs >>> tks nha!!!
?????????????????????????????????????????????? Are you learning English or Math? I'm sure you are're mistake of English
Find the least positive integer n such that n(n + 1)(n + 2)(n + 3) is divisible by 1000.
Tìm số nguyên dương n nhỏ nhất sao cho n(n + 1)(n + 2)(n + 3) chia hết cho 1000.
+ cách giải ( Không dùng máy tính cầm tay)
Factorial n! means the product of the first integers from 1 to n. What is the least positive integer n such that n! is a multiple of 2015*2016?
Trình bày lời giải cho mình nhé
tớ chịu thông cảm cho tớ rằng tớ không biết chữ gì về tiếng anh , tiếng em nhé
Nhân tố n! Có nghĩa là sản phẩm của các số nguyên đầu tiên từ 1 đến n. Số nguyên dương ít nhất n sao cho n! Là một trong nhiều năm 2015 * năm 2016?
Xác xuất của 3 đỉnh của khối lập phương từ một tam giác vuông là gì ?
1. Determine all pairs of integer (x;y) such that \(2xy^2+x+y+1=x^2+2y^2+xy\)
2. Let a,b,c satisfies the conditions
\(\hept{\begin{cases}5\ge a\ge b\ge c\ge0\\a+b\le8\\a+b+c=10\end{cases}}\)
Prove that \(2a^2+b^2+c^2\le38\)
3. Let a nad b satis fy the conditions
\(\hept{\begin{cases}a^3-6a^2+15a=9\\b^3-3b^2+6b=-1\end{cases}}\)
Find the value of\(\left(a-b\right)^{2014}\) ?
4. Find the smallest positive integer n such that the number \(2^n+2^8+2^{11}\) is a perfect square.
Find the smallest póitive integer n such that the number \(2^n+2^8+2^{11}\)is a perfect square
Find the least integer number x such that 4/x-3 is the integer number.
find the smallest positive integer k for which \(\sqrt{6075\cdot k}\) is a whole number
Answer : the smallest positive integer k is ......
2. find the value of k such that the remainder is the greatest
k/13= 11Rx
K=
Let x,y be the positive integers such that \(3x^2+x=4y^2+y\) . Prove that x-y is a perfect integer.