Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao thủ vô danh thích ca...
Xem chi tiết
Nguyễn Ngọc Thuỳ Vy
Xem chi tiết
luu phuong thao
26 tháng 11 2015 lúc 18:17

a/ A= 1-3+5-7+9-11+......+97-99

      = -2+(-2)+(-2)+......+(-2)

      = (-2).25=-50

b/B=-1-2-3-4-...-100

    =-(1+2+3+4+...+100)

    =-5050

c/C=1-2+3-4+5-6+......+99-100

      = -1+(-1)+(-1)+.............+(-1)

      =(-1).50=-50

d/D=1-2-3+4+5-6-7+8+9-....+94-95

     = (1-2-3+4)+(5-6-7+8)+.......+(92-93-94+95)

    = 0+0+0+...+0=0 

Khánh Linh Nguyễn
Xem chi tiết
Vũ Thùy Linh
Xem chi tiết
Ác Mộng
4 tháng 7 2015 lúc 8:41

\(A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\cdot3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}\right)\cdot3^9+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\cdot3^{101}\)=\(\left(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\right)+\left(\frac{3^9}{3^5}+\frac{3^9}{3^6}+\frac{3^9}{3^7}+\frac{3^9}{3^8}\right)+...+\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)

=(3+32+33+34)+(3+32+33+34)+...+(3+32+33+34)

Tổng trên có số số hạng là(mỗi ngoặc là 1 số hạng)

(101-5):4+1=25(số hạng)

=>A=25.(3+32+33+34)=25.120=3000

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 7 2019 lúc 17:47

a)

C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.

b)

B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.

Quang Phạm
Xem chi tiết
Đoàn Yến Chi
5 tháng 3 2017 lúc 18:49

B = 1 bạn nhé , đúng 100000000000% luôn

Quang Phạm
Xem chi tiết
Đừng hỏi tên tôi
Xem chi tiết
KAl(SO4)2·12H2O
15 tháng 2 2018 lúc 16:23

\(\text{A}=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

\(\frac{1}{2}.\text{A}=\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+...+\frac{99}{2^{100}}+\frac{100}{2^{101}}\)

\(=\left[\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right]-\frac{100}{2^{101}}\left(\text{do}\frac{3}{2^3}=\frac{1}{2^2}+\frac{1}{2^3}\right)\)

\(=\frac{\left[1-\left(\frac{1}{2}\right)^{101}\right]}{\left(1-\frac{1}{2}\right)}-\frac{100}{2^{101}}\)

\(=\frac{\left(2^{101}-1\right)}{2^{100}}-\frac{100}{2^{101}}\)

\(\Rightarrow\text{A}=\frac{\left(2^{101}-1\right)}{2^{99}}-\frac{100}{2^{101}}\)

P/s: Sai đâu thì bn sửa nhé.

Đặng Đình Tùng
15 tháng 2 2018 lúc 16:10

Bài này là ttoan nâng cao hả bạn

Đừng hỏi tên tôi
16 tháng 2 2018 lúc 20:29

mk cx ko bt đúng hay sai nhưng cx cho bn k

Dương Thụ Khánh Ninh
Xem chi tiết