Cho tứ giác lồi ABCD có góc A + góc C = 180 độ , ABAD , AC là tia phân giác góc BAD . C/M : BC=DC
Bài 1 : Cho tứ giác lồi ABCD có góc A + góc C = 180 độ, AB<AD, AC là tia phân giác của góc BAD . Chứng minh rằng BC = DC
Bài 2 : Cho tứ giác lồi ABCD có góc B + góc D = 180 độ. Hai đường thẳng AD và BC cắt nhau tại E, hai đường thẳng AB và DC cắt nhau tại F. Vẽ 2 tia phân giác của 2 góc BFC và CED, chúng cắt nhau tại M. Chứng minh rằng EMF = 90 độ
Cho tứ giác lồi ABCD . góc A + góc C = 180độ. AB < AD . AC là tia phân giác của góc BAD . Chứng minh BC = DC.
Hình thì bạn tự vẽ nha!
Trên cạnh AD lấy điểm M sao cho AM=AB vì AB<AD(gt) => AM< AD => M nằm giữa A,D
Bạn chứng minh tam giác ABC và tam giác AMC theo trường hợp góc cạnh góc rồi suy ra
CM=BC, gABC=gAMC(1). Tứ giác ABCD có góc A+gB+gC+gD=360 độ mà gA+gC=180
=> gB+gD=180 độ(2). Từ (1),(2)=> gD+gAMC=180 độ
gAMC+gDMC=180 độ ( 2 góc kề bù)
=> gD=gDMC=> tam giác DMC cân tại C
Mạt khác DC=MC, MC=BC=> DC=BC(đpcm)
Cho Tứ giác ABCD có góc A + góc B =180 độ , AB<AD ,AC là tia phân giác của góc BAD .Chứng minh rằng BC = DC
\(\hept{\begin{cases}\widehat{xAD}+\widehat{BAD}=180\\\widehat{ABC}+\widehat{BAD}=180\end{cases}\Leftrightarrow\widehat{xAD}=\widehat{ABC}\Rightarrow}\)AD//BC (1)
Tổng các góc trong tứ giác là 360
\(\widehat{ABC}+\widehat{BAD}+\widehat{BCD}+\widehat{CDA}=180+\widehat{BCD}+\widehat{CDA}=360\)\(\Rightarrow\widehat{BCD}+\widehat{CDA}=180\)
mặt khác : \(\widehat{ADy}+\widehat{CDA}=180\)\(\Rightarrow\widehat{BCD}=\widehat{yDA}\)=> \(\widehat{yDA}=\widehat{BAD}\)=> AB//CD (2)
từ 1,2 có ABCD là hình bình hành và có đường chéo AC là đường phân giác của \(\widehat{BAD}\)nên ABCD là hình thoi => BC =AD
1) Cho tứ giác lồi ABCD có góc B + D= 180°, CB= CD. Chứng minh AC là tia phân giác góc BAD
2) Tứ giác ABCD có AC là tia phân giác góc A, BC= CD, AB<AD
a) Lấy điểm E trên cạnh AD sao cho AE= AB. Chứng minh rằng góc ABC= AEC
b) Chứng minh góc B+ D= 180°
cho tứ giác lồi ABCD có góc B=D = 180 độ, CB=CD. Chứng minh rằng AC là tia phân giác góc BAD
B+C=180 đô thì may ra còn có thể giải mặc dù ko biết là có ra đáp án hay không, chứ B=C=180 độ thì vẽ hình ra mà giải được bằng niềm tin à
Cho tứ giác ABCD có tổng 2 góc A và C bằng 180 độ, AB < AD, gọi AD là tia phân giác của góc BAD. Chứng minh BC = DC
1/ cho tứ giác lồi ABCD có B+D=180 độ, CB=CD. CMR AC là tia p/giác của góc BAD
2/ cho tứ giác lồi ABCD, hai cạnh AD và BC cắt nhau tại E, hai cạnh DC và AB cắt nhau tại F. Kẻ 2 p/giác của 2 góc CED và BFC cắt nhau tại I. Tính góc EIF theo các góc trong của tứ giác ABCD
3/ Cho tứ giác ABCD.
a) CMR 1/2 p < AC+BD < p (p là chu vi tứ giác)
b) C/M AB+CD < AC+BD
c) Biết chu vi tam giác ABD nhỏ hơn chu vi tam giác ACD, chứng minh AB<AC.
Cho tứ giác lồi ABCD có góc B+D=180, CB=CD. Chứng minh AC là tia phân giác của góc BAD
Cho tứ giác lồi ABCD có \(\widehat{A}+\widehat{B}=180^\circ\), AB<AD, AC là tia phân giác của \(\widehat{BAD}\). Kẻ H, K lần lượt là chân đường vuông góc của C xuống đường thẳng AB, AD. CMR: BC=DC