Cho 10 số nguyên dương a1,a2,.......,a10.CMR tồn tại các số ci thuộc -1;0;1 và i=1,.......,10 không đồng thời bằng 0 sao cho c1a1+c2a2+.....+c10a10 chia hết cho 1031
Các bạn giúp mk vs .MK cảm ơn
cho 2016 số nguyên dương a1 ;a2;a3;.....2016 thỏa mãn 1/a1+1/a2+...+1/a2016 cmr tồn tại ít nhất hai số bằng nhau
cho các số a1;a2;a3; ... ; a10 là các số nguyên tố đầu tiên . cmr x= a1*a2*a3*...*a10+1 là số nguyên tố
giải đầy đủ tận gốc nhé mình kết bạn
cho 10 STN bất kỳ a1;a2 ....a10 CMR tồn 1 số chia hết cho 10 hoặc tổng của 1 số số chia hết cho 10
1,Cho 2000 số A1,A2,A3,...A2000 là các số TN thỏa mãn: 1/A1+1/A2+1/A3+....+1/A2000=1. CMR tồn tại ít nhất 1 số Ak là số chẵn
2,Gọi A1,A2,A3,...A100 là các số TN thỏa mãn: 1/A21+1/A22+....+1/A1002=199/100. CMR có ít nhất 2 số TN trong các số trên =nhau
3,Cho 2021 số nguyên dương A1,A2,....,A2021 thỏa mãn 1/A1+1/A2+1/A3+.....+1/A2021=1011. CMR ít nhất 2 trong đó = nhau
Giúp mình với nha!
cho 10 số a1, a2,...,a10 thỏa mãn đồng thời hai điều kiện a1 - 1/10 = a2 - 2/9 = a3 - 3/8 =...= a10 - 10 / 1 và a1 + a2=42. Tính S=a1-a2+a3-a4+...+a9-a10
Cho 2016 số nguyên dương a1, a2, a3, ... , a2016 thỏa mãn 1/a1+1/a2+...+1/a2016=30 Chứng minh rằng trong 2016 số dã cho tồn tại ít nhất 2 số bằng nhau
1.Cho n >= 2. Chứng minh rằng tồn tại các số a1<a2<a3<...<an; a nguyên dương sao cho
1/a1^2 + 1/a2^2 +...+ 1/an^2 = 1/a^2
2.Cho 7 số tự nhiên phân biệt có tổng là 100. Chứng minh tồn tại 3 số có tổng lớn hơn hoặc bằng 50
Cho 10 STN bất kì : a1,a2, a3,....,a10. CMR thế nào cũng có 1 số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10
Trong câu hỏi tương tự có rất nhiều bài giải về câu hỏi này . Bạn có thể tham khảo các cách giải trong đó nha .
bạn nhấn vào đây
Cho 10 số tự nhiên bất kì :a1;a2;a3;...;a10.Chứng minh rằng thế nào cũng có một số hoặc tổng các số liên tiếp nhau trong dãy trên chia hết cho 10
Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp :
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm)
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10)
...Sm = a1+a2+ ... + a(m)
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n)
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)