Cho phân số A = \(\frac{2n+1}{6n+5}\)
Chứng minh A là phân số tối giản
Chứng minh các phân số là phân số tối giản : \(\frac{n+1}{2n+3}\); \(\frac{8n+5}{6n+4}\)
a)Gọi ƯCLN(n + 1 ; 2n + 3) = d
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}\left(2n+3\right)-\left(2n+2\right)⋮d}\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản
b) Gọi ƯCLN(8n + 5 ; 6n + 4) = d
\(\Rightarrow\hept{\begin{cases}8n+5⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(8n+5\right)⋮d\\4\left(6n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+15⋮d\\24n+16⋮d\end{cases}\Rightarrow}\left(24n+16\right)-\left(24n+15\right)⋮d}\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)
=> 8n + 5 ; 6n + 4 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{8n+5}{6n+4}\)là phân số tối giản
chứng minh rằng:6n+5/2n+1 là phân số tối giản
Chứng minh rằng:Với mọi số tự nhiên n thì \(\frac{2n+1}{6n+1}\)là phân số tối giản.
Chứng minh các phân số sau tối giản : a ) n/2n+1 b ) 2n+3/4n+8 c ) 3n+2/5n+3 d ) 2n+1/6n+5
a) \(\frac{n}{2n+1}\)
Gọi \(d=ƯCLN\left(n;2n+1\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n;2n+1\right)=1\)
\(\Rightarrow\)Phân số \(\frac{n}{2n+1}\)là phân số tối giản
b) \(\frac{2n+3}{4n+8}\)
Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
Vì \(2n+3=\left(2n+2\right)+1=2\left(n+1\right)+1\)(không chia hết cho 2)
\(\Rightarrow d\ne2\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)
\(\Rightarrow\)Phân số \(\frac{2n+3}{4n+8}\)là phân số tối giản
c) \(\frac{3n+2}{5n+3}\)
Gọi \(d=ƯCLN\left(3n+2;5n+3\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}}\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+2;5n+3\right)=1\)
\(\Rightarrow\)Phân số \(\frac{3n+2}{5n+3}\)là phân số tối giản
Chứng tỏ rằng phân số A= \(\frac{6n+5}{2n+1}\)
là phấn số tối giản với mọi n thuộc N
vào câu hỏi tương tự dựa theo cách lm để giải nhé
chứng tỏ rằng các phân số sau là phân số tối giản:
a)\(\frac{2n+5}{3n+7}\) b)\(\frac{6n-14}{2n-5}\)
a)gọi d thộc ƯC ( 2n+5,3n+7)
=> 2n+5chia hết cho d 6n+15chia hết cho d
<=> <=> 6n+15-6n-14c/h cho d<=> 1 c/h cho d<=> d=1;-1
và 3n+7 chia hết cho d và 6n+14 c/h cho d
=>A là p số tối giản
b) làm tương tự a). ở đây, nhân 2n-5 lên 3 lần rồi lấy 6n-14-kết q vừa tìm đc thì ta đc d=1
a)gọi d là ƯCLN(2n+5;3n+7)
=>2n+5 chia hết cho d và 3n+7 chia hết cho d
=>(2n+5)-(3n+7) chia hết cho d
hay 3(2n+5)-2(3n+7) chia hết cho d
=>d=1
Vì ƯCLN=1. Nên phân số 2n+5/3n+7 là phân số tối giản
b) làm tương tự như câu a nhé bạn
Chứng minh phân số sau là phân số tối giản với mọi só tự nhiên n \(\frac{5n+1}{6n+1}\) ;;;\(\frac{4n+8}{2n+3}\)
gọi d là ƯCLN(5n+1;6n+1)
=>5n+1 chia hết cho d =>6(5n+1)chia hết cho d=>30n+6 chia hết cho d
=>6n+1 chia hết cho d =>5(6n+1)chia hết cho d=>30n+5 chia hết cho d
=>(30n+6)-(30n+5)chia hết cho d
=> 1 chia hết cho d
=> d= 1
=>5n+1 và 6n+1 là hai snt cùng nhau
Vậy phân số 5n+1/6n+1 là phân số tối giản
chứng tỏ rằng \(\frac{3n+5}{12n+11}\) là phân số tối giản
cho A=6n+2/2n+1
với mọi số tư nhiên n,chứng tỏ rằng A là phân số tối giản
gọi d là ƯCLN của 6n+2 và 2n+1
=> 6n+2 chia hết cho d và 2n+1 chia hết cho d
=>6n+2 chia hết cho d và 3(2n+1) = 6n+3 chia hết cho d
=>(6n+3) - (6n+2) chia hết cho d
=> 6n+ 3 - 6n -2 chia hết cho d=>1 chia hết cho d => d = 1
=> ƯCLN(6n+2;2n+1) = 1=>6n+2/2n+1 là phân số tối giản => đpcm