tìm số nguyên tố B để 44+B2 cũng là số nguyên tố
B1 Tìm 1 số nguyên tố, biết rằng số đó bằng tổng của 2 số nguyên tố và cũng bằng hiệu của 2 số nguyên tố.
B2 Các số sau là số nguyên tố hay hợp số? vì sao?
C=1010001
E= 3.5.7.9.11- 44
D= 1!+2!+3!+....+100!
B3 cho P và 8P-1 là các số nguyên tố. CMR: 8P+1 là hợp số.
Cho P là số nguyên tố . Hảy tìm P để P2 + 44 cũng là số nguyên tố
(+) với p= 2 => p^2 + 44 không là sô nguyên tố
(+) với p = 3 => p^2 + 44 = 9 + 44 = 53 là số nguyên tố :
(+) với p > 3 => p có dạng 3K+ 1 hoặc 3K + 2 ta có
(-) với p= 3k + 1 ta có : p^2 + 44 = ( 3k+ 1 )^ 2 +44 = 9k^2 + 6k + 1 + 44 = 9k^2 + 6k+ 45 = 3 ( 3k^2 + 2k + 15 )chia hết cho 3 với mọi K
(+) p = 3k + 2 ta có : p^2 + 44 = ( 3k + 2)^2 + 44 = 9k^2 + 6k + 4 + 44 = 9k^2 + 6k + 48 = 3 ( 3k^2 + 2k + 16 ) chia hết cho 3 với mọi k
tìm số nguyên tố P sao cho
a. P+94 và P+1994 cũng là các số nguyên tố
b..P^2+44 là số nguyên tố
tìm số nguyên tố p sao cho p^2+44 cũng là số nguyên tố
Tìm số nguyên tố p sao cho p^2 + 44 cũng là số nguyên tố.
vì 53 là số nguyên tố => p^2+44=53=>p^2=53-44=9=>p^2=3^2=>p=3
Tìm số nguyên tố p biết p2 + 44 cũng là số nguyên tố
Xét p=2
=> p2+44=22+44=4+44=48 (là hợp số , loại )
Xét p=3
=> p2+44=32+44=9+44=53 ( là số nguyên tố , thỏa mãn )
Xét p>3
=> p=3k+1;3k+2 ( k \(\in\)N*)
Với p=3k+1
=> p2+44= (3k+1)2+44 = 3k(3k+1)+3k+1+44=3k(3k+1)+3k+45 = 3k.(3k+1+1)+45
Vì 3k.(3k+1+1) ; 45 chia hết cho 3
=> p2+44 chia hết cho 3 (là hợp số , loại )
Voi p = 3k+2
=> p2+44 = (3k+2)2+44=3k(3k+2)+2.(3k+2)+44
= 3k(3k+2)+6k+4+44
= 3k(3k+2)+6k+48
Vi 3k(3k+2) ; 6k ; 48 deu chia het cho 3
=> p2+44 chia hết cho 3 (là hợp số , loại )
Vậy p=3
Tìm số nguyên tố P sao cho:
a) P2 + 44 là số nguyên tố.
b) P+2; P+6; P+8; P+12; P+14 cũng là số nguyên tố.
bài 9:Tìm số nguyên tố p sao cho:
a)p+16;p+38 cũng là các số nguyên tố
b)p+28;p+44 cũng là các số nguyên tố
c)p+26;p+42;p+48'p+74 là các số nguyên tố
bài 10:a)tổng 3 số tự nhiên liên tiếp là số nguyên tố hay hợp số?
b)tổng 3 số tự nhiên lẻ liên tiếp là số nguyên tố hay hợp số?
9 Tìm số nguyên tố p sao cho :
a) Nếu p = 2
=> p + 16 = 2 + 16 = 18 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 16 = 3 + 16 = 19 (số ngyên tố)
=> p + 38 = 3 + 38 = 41 (số nguyên tố)
=> p = 3 (chọn)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Nếu p = 3k + 1
=> p + 38 = 3k + 1 + 38 = 3k + 39 = 3(k + 13) \(⋮\)3
=> p = 3k + 1 (loại)
Nếu p = 3k + 2
=> p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) \(⋮\)3
=> p = 3k + 2 (loại)
Vậy p = 3
b) Nếu p = 2
=> p + 28 = 2 + 28 = 30 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 28 = 3 + 28 = 31 (số ngyên tố)
=> p + 44 = 3 + 44 = 47 (số nguyên tố)
=> p = 3 (chọn)
Nếu p > 3
=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)
Nếu p = 3k + 1
=> p + 44 = 3k + 1 + 44 = 3k + 45 = 3(k + 15) \(⋮\)3
=> p = 3k + 1 (loại)
Nếu p = 3k + 2
=> p + 28 = 3k + 2 + 28 = 3k + 30 = 3(k + 10) \(⋮\)3
=> p = 3k + 2 (loại)
Vậy p = 3
c) Nếu p = 2
=> p + 26 = 2 + 26 = 28 (hợp số)
=> p = 2 (loại)
Nếu p = 3
=> p + 42 = 3 + 42 = 45 (hợp số)
=> p = 3 (loại)
Nếu p = 5
=> p + 26 = 5 + 26 = 31 (số nguyên tố)
=> p + 42 = 5 + 42 = 47 (số nguyên tố)
=> p + 48 = 5 + 48 = 53 (số nguyên tố)
=> p + 74 = 5 + 74 = 79 (số nguyên tố)
=> p = 5 (chọn)
Nếu p > 5
=> p = 5k + 1 hoặc p = 5k + 2 hoặc p = 5k + 3 hoặc p = 5k + 4 (\(k\inℕ^∗\))
Nếu p = 5k + 1
=> p + 74 = 5k + 1 + 74 = 5k + 75 = 5(k + 15) \(⋮\)5
=> p + 74 là hợp số
=> p = 5k + 1 (loại)
Nếu p = 5k + 2
=> p + 48 = 5k + 2 + 48 = 5k + 50 = 5(k + 10) \(⋮\)5
=> p + 48 là hợp số
=> p = 5k + 2 (loại)
Nếu p = 5k + 3
=> p + 42 = 5k + 3 + 42 = 5k + 45 = 5(k + 9) \(⋮\)5
=> p + 42 là hợp số
=> p = 5k + 3 (loại)
Nếu p = 5k + 4
=> p + 26 = 5k + 4 + 26 = 5k + 30 = 5(k + 6) \(⋮\)5
=> p + 26 là hợp số
=> p = 5k + 4 (loại)
Vậy p = 5
10) a) Gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2
Ta có : a + a + 1 + a + 2 = 3a + 6
= 3(a + 2) \(⋮\)3
=> Tổng của 3 số tự nhiên liên tiếp là hợp số
b) Gọi 3 số tự nhiên lẻ liên tiếp là : a ; a + 2 ; a + 4
=> Ta có : a + a + 2 + a + 4 = 3a + 6
= 3(a + 2) \(⋮\)3
=> Tổng của 3 số tự nhiên lẻ liên tiếp là hợp số
Tìm các số nguyên tố p sao cho \(^{p^2}\)+44 cũng là số nguyên tố
+, p=2 :
\(\Rightarrow p^2+44=4+44=48\) (hợp số loại)
+, p=3 :
\(\Rightarrow p^2+44=9+44=53\)(số nguyên tố thỏa mãn)
+, \(p>3\):
\(\Rightarrow\)p có dạng 3k+1;3k+2: \(\left(k\inℕ^∗\right)\)
+,p=3k+1:
\(\Rightarrow\left(3k+1\right)^2+44=3n+1+44=3n+45⋮3\)(hợp số loại)
+, p=3k+2:
\(\Rightarrow\left(3k+2\right)^2+44=3m+1+44=3m+45⋮3\)(hợp số loại) \(\left(m;n\inℕ^∗\right)\)
Vậy p=3