Cho Tam giác ABC có 3 góc nhọn 2 đường cao BE và CF cắt nhau tại H lấy P trên BH và Q trên CH sao cho góc APC = góc AQB =90*
a) cm AE.AC=AF.AB b) cm AP=AQ
cho tam giác abc nhọn đường cao ad be cf. trên be và cf lấy điểm p và q sao cho góc aqb=góc apc +90 độ. chứng minh tam giác aqd cân
cho tam giác abc nhọn đường cao ad be cf. trên be và cf lấy điểm p và q sao cho góc aqb=góc apc +90 độ. chứng minh tam giác aqd cân
Cho ΔABC nhọn. Đường cao BE, CF cắt nhau ở H.
a/ Cm: AE.AC = AF.AB
b/ Cm: BH.BE + CH.CF = \(BC^2\)
c/ Trên đoạn BH, CH lần lượt lấy M, N sao cho góc AMC = góc ANB = \(90^o\). Cm: ΔAMN cân
a) Xét tam giác AFC và tam giác AEB có:
^A chung
^F vuông góc ^E
Vậy: tam giác AFC đồng dạng tam giác AEB (g.g)
vì tam giác AFC đồng dạng tam giác AEB (cmt) nên:
=> AF/AC = AE/AB
=> AE.AC = AF.AB (đpcm)
b) từ H kẻ HK vuông góc BC
+) xét tam giác BKH và tam giác BEC có:
^HBC chung
^BKH = ^BEC (= 90 độ)
vậy: tam giác BKH đồng dạng tam giác BEC (g.g)
=> BK/BH = BE/BC
=> BH.BE = BK.BC (1)
+) xét tam giác CKH và tam giác CFB:
^BHC chung
^CKH = ^CFB (= 90 độ)
vậy: tam giác CKH đồng dạng tam giác CFB
=> CK/CH = CF/CB
=> CH.CF = BC.CK (2)
Từ (1) và (2) ta có:
BH.BE + CH.CF = BK.BC + CK.BC
= BC.(BK + CK)
= BC.BC
= BC^2
=> BH.BE + CH.CF = BC^2 (đcpm)
Cho tam giác ABC nhọn nội tiếp đường tròn (O), 2 đường cao BE và CF của tam giác ABC cắt nhau tại H. Chứng minh: a. Tứ giác BCEF nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BCEF. b. CM: AE.AC = AF.AB c. Tia AO cắt đường tròn (O) tại P, cắt EF tại Q. CM AP vuông góc với EF
Cho \(\Delta ABC\) nhọn, các đường cao \(AD,BE,CF\) cắt nhau tại \(H\)
a) \(Cm:\Delta AEB\) và \(\Delta AFC\) đồng dạng và \(AF.AB=AE.AC\)
b) \(Cm\): góc \(BAD\)\(=\) góc\(BEF\)
c) Gọi \(AI\) là tia phân giác của góc \(BAC\), tia \(AI\) cắt \(FE\) tại \(O\)
\(Cm:IB.OF=IC.OE\)
a: Xét ΔAEB vuông tại E và ΔAFC vuôg tại F có
góc BAE chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét tứ giác AFHE có
góc AFH+góc AEH=180 độ
=>AFHE nội tiếp
=>góc FAH=góc FEH
=>goc BAD=góc BEF
Cho tam giác abc có 3 góc nhọn 2 đừơng cao be,cf cắt nhau tại h
A, cm ah vuông góc với bc
B, ae.ac=af.ab
C, tam giác aef đồng dạng với tam giác abc
Cho tam giác ABC nhọn, 2 đường cao BD,CE giao nhau tại H. a)Cm: AE.AB=AD.AC b)Trên BH,HC lần lượt lấy điểm M và N sao cho góc AMC= góc ANB=90°. Cm: AP vuông góc với MN Mn giúp mình phần B với Cảm ơn nhiều ạ!
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔABD đồng dạng với ΔACE
=>\(\dfrac{AB}{AC}=\dfrac{AD}{AE}\)
=>\(AB\cdot AE=AD\cdot AC\)(3)
b: Sửa đề: Gọi P là trung điểm của MN.Chứng minh AP vuông góc MN
Xét ΔAMC vuông tại M có MD là đường cao
nên \(AD\cdot AC=AM^2\left(1\right)\)
Xét ΔANB vuông tại N có NE là đường cao
nên \(AE\cdot AB=AN^2\left(2\right)\)
Từ (1) và (2) và (3) suy ra AM=AN
ΔAMN cân tại A
mà AP là đường trung tuyến
nên AP\(\perp\)MN
CHO TAM GIÁC ABC CÓ 3 GÓC NHỌN , ĐCAO BE VÀ CF CẮT NHAU TẠI H
A. CM AE.AC=AF.AB
B. TAM GIÁC AEF ĐỒNG DẠNG VS ABC
C. AH CẮT BD TẠI D , ED CẮT FC TẠI I . CMR HI.CF=HF.IC
cho tam giác abc có 3 góc nhọn, đường cao bh, cf cắt tại h. trên hb lấy i, hc lấy k sao cho góc aic = akb =90*
a) chứng minh tam giác abc cân b)AI=6cm, AC=10cm. Tính IC, CM, diện tích tam giác AIM