\(\frac{32^n}{16^n}\) = 2048 Tìm n thuộc \(ℕ\)
Tìm n thuộc Z để
\(32^{-n}.16^n=2048\)
Các bạn làm theo cách nào dễ hiểu nhất nha!!
Theo đề ta có : \(32^{-n}.16^n=2048\)
\(\Rightarrow\frac{1}{32^n}.16^n=2048\)
\(\Rightarrow\frac{16^n}{32^n}=2048\)
\(\Rightarrow\left(\frac{16}{32}\right)^n=\left(\frac{1}{2}\right)^n=2048\)
\(\Rightarrow\frac{1}{2^n}=2048\)
\(\Rightarrow2^n=\frac{1}{2048}\)
\(\Rightarrow2^n=\frac{1}{2^{11}}\Rightarrow1=2^n.2^{11}\)
\(\Rightarrow2^n=2^{-11}\Rightarrow n=-11\) ( bởi vì tích của 2 số nghịch đảo bao giờ cũng bằng 1)
qui ước \(x^{-a}=\frac{1}{x^a}\)
ta có
\(32^{-n}.16^n=2048\Rightarrow\frac{1}{32^n}.16^n=2^{10}\Rightarrow\frac{16^n}{32^n}=2^{10}\)
\(\Rightarrow\left(\frac{16}{32}\right)^n=\frac{1}{2^n}=2^{10}\Rightarrow2^{-n}=2^{10}\Rightarrow-n=10\Rightarrow n=-10\)
Tìm x thuộc Z
a)\(32^{-n}.16^n=2048\)
b)\(2^{-1}.2^n+4.2^n=9.2^5\)
a)\(32^{-n}\cdot16^n=2048\)
\(\left(2^5\right)^{-n}\cdot\left(2^4\right)^n\)=2048
\(2^{-5n}\cdot2^{4n}\)=\(2^{11}\)
\(2^{-5n+4n}=2^{11}\)
\(2^{-x}=2^{11}\)
\(\Rightarrow x=-11\)
b)\(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\frac{1}{2}\cdot2^n+4\cdot2^n=288\)
\(2^n\left(\frac{1}{2}+4\right)=288\)
\(2^n\cdot\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=64\)
\(2^n=2^6\)
\(\Rightarrow n=6\)
a) 32-n . 16n = 2048
\(\frac{1}{32n}\) . 16n = 2048
\(\frac{1}{2^n.16^n}\) . 16n = 2048
\(\frac{1}{2^n}\) = 2048
2-n = 2048
2-n = 211
\(\Rightarrow\) -n = 11
\(\Rightarrow\) n = -11
Vậy n = -11
Tìm n biết 32-n*16n=2048
32^-n.16^n=2048=>1/32^n.16^n=2048
=>1/(16^n.2^n).16^N=2048
=>1/2^n=2048=>n= -11
Tìm n thuộc Z biết:
a)\(\frac{1}{9}.27^n=3^n\)
b) \(3^2.3^4.3^n=3^7\)
c) \(2^{-1}.2^n+4.2^n=9.2^5\)
d) \(32^{-n}.16^n=2048\)
a) Ta có: \(\frac{1}{9}\cdot27^n=3^n\)
\(\Leftrightarrow\frac{1}{3^2}\cdot\left(3^3\right)^n=3^n\)
\(\Leftrightarrow3^{3n}=3^{n+2}\)
\(\Rightarrow3n=n+2\)
\(\Rightarrow n=1\)
b) Ta có: \(3^2.3^4.3^n=3^7\)
\(\Rightarrow3^n=3\)
\(\Rightarrow n=1\)
c) Ta có: \(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Leftrightarrow2^n\cdot\frac{9}{2}=9.2^5\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
d) Ta có: \(32^{-n}.16^n=2048\)
\(\Leftrightarrow\frac{1}{2^{5n}}\cdot2^{4n}=2^{11}\)
\(\Leftrightarrow2^{4n}=2^{5n+11}\)
\(\Rightarrow4n=5n+11\)
\(\Rightarrow n=-11\)
Tìm giá trị của n, biết: 32n- 16n= 2048
32n - 16n = 2048
=> (25)n - (24)n = 211
=> 2n(25 - 24) = 211
=> 2n.23 = 211
=> 2n = 28
Tìm số tự nhiên x:
a/ 2^(-1)*2^n+4*2^n=9*2^5
b/ 32^(-n)*16^n=2048
tìm n biết
1 / 9*27^n=3^n
32^-n*16^n=2048
2^-1*2^n+4*2^n=9*2^5
Bài 32 : Tìm số nguyên n , biết :
a) \(\frac{1}{9}.27^n=3^n\)
b) \(3^{-2}.3^4.3^n=3^7\)
c) \(2^{-1}.2^n+4.2^n=9.2^5\)
d) \(32^{-n}.16^n=2048\)
a) \(\frac{1}{9}.27^n=3^n\)
\(\Leftrightarrow3^{-2}.3^{3n}=3^n\)
\(\Leftrightarrow3^{3n-2}=3^n\)
\(\Leftrightarrow3n-2=n\)
\(\Leftrightarrow2n=2\)
\(\Leftrightarrow n=1\)
b)\(3^{-2}.3^4.3^n=3^7\)
\(\Leftrightarrow3^{2+n}=3^7\)
\(\Leftrightarrow2+n=7\)
\(\Leftrightarrow n=5\)
c) \(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Leftrightarrow2^n\left(4+\frac{1}{2}\right)=9.2^5\)
\(\Leftrightarrow2^n.\frac{9}{2}=9.2^5\)
\(\Leftrightarrow2^{n-1}=2^5\)
\(\Leftrightarrow n-1=5\Leftrightarrow n=6\)
bài 1 : tìm GTLN : M = 3 - /5-x/
N = 10 - /x+2/ - /1-y/
Bài 2: tìm n
a ) 32< 2n < 128
b)\(\frac{1}{9}.27^n=3^n\)
c) \(3^{-1}.3^n+4.3^n=13.3^7\)
\(32^{-n}.16^n=2048\)
HELP ME NOW