Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trà My Nguyễn Thị
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Trần Phúc Khang
30 tháng 6 2019 lúc 7:35

Bài bạn ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★  có vài chỗ sai xót cần sửa lại

Còn đây là cách của mình

Để A= \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên 

thì đồng thời \(\sqrt{\frac{2005}{x+y}}\);\(\sqrt{\frac{2005}{y+z}}\);\(\sqrt{\frac{2005}{x+z}}\)là số hữu tỉ

Xét \(\sqrt{\frac{2005}{x+y}}\)là số hữu tỉ 

+  \(2005⋮x+y\)

Do 2005 có duy nhất ước 1 là số chính phương

=> \(x+y=2005\)

Khi đó \(A=1+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số chính phương khi \(\sqrt{\frac{2005}{y+z}}=\sqrt{\frac{2005}{x+z}}=1\)hoặc\(=\frac{1}{2}\)

=> \(x=y=\frac{2005}{2}\)loại

\(x+y⋮2005\)và \(x+y\ne2005\)

=> \(x+y=2005.k^2\)\(k\inℕ^∗,k>1\))

Tương tự :\(y+z=2005.h^2\)

                \(x+z=2005.g^2\)\(h,g\inℕ^∗;h,g>1\)=> \(2\left(x+y+z\right)=2005\left(k+h+g\right)\)

=> \(A=\frac{1}{k}+\frac{1}{h}+\frac{1}{g}\)

Mà \(A\ge1\)

=> \(\frac{3}{2}\ge\frac{1}{k}+\frac{1}{h}+\frac{1}{g}\ge1\)

=> \(\frac{1}{k}+\frac{1}{h}+\frac{1}{g}=1\)

Giả sử \(k\ge h\ge g\)=> \(\frac{1}{k}\le\frac{1}{h}\le\frac{1}{g}\)

=> \(1\le\frac{3}{g}\)=> \(g\le3\)Mà g>1 => \(g\in\left\{2;3\right\}\)

Với \(g=2\)=> \(k+h\)chẵn => \(\frac{1}{k}+\frac{1}{h}=\frac{1}{2}\)=> \(\frac{h+k}{k.h}=\frac{1}{2}\)=> \(k.h\)chẵn => k ; h chẵn

\(\frac{1}{2}\le\frac{2}{h}\)=> \(h\le4\)=> \(h\in\left\{2;4\right\}\)

Thay vào ta được \(h=4;k=4\)

Khi đó \(\hept{\begin{cases}x+y=2005.4\\y+z=2005.16\\x+z=2005.16\end{cases}}\)= >\(\hept{\begin{cases}x=2005.2\\y=2005.2\\z=2005.14\end{cases}}\)

Vậy \(\left(x,y,z\right)=\left(2005.2;2005.2;2005.14\right)\)và các hoán vị

Để \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên thì

\(\hept{\begin{cases}\frac{2005}{x+y}\\\frac{2005}{y+z}\\\frac{2005}{x+z}\end{cases}}\)là bình phương của 1 số hữu tỉ

Gỉa sử đặt \(\frac{2005}{x+y}=\left(\frac{a}{b}\right)^2\Leftrightarrow\frac{a^2\left(x+y\right)}{b^2}=2005\)

\(\Rightarrow\orbr{\begin{cases}a^2⋮2005\\x+y⋮2005\end{cases}}\)

Xét \(a^2⋮2005\Rightarrow a^2=2005k\left(k\inℕ^∗\right)\)

\(\Rightarrow\frac{2005}{x+y}=\frac{2005k}{b^2}\)\(\Rightarrow b^2=\left(x+y\right)k\)

mà x,y nguyên dương=> x+y=k

\(\Rightarrow b^2⋮2005\)\(\Rightarrow x+y⋮2005\)\(\Rightarrow x+y=2005\)

Tương tự y+z=z+x=2005

Thay vào ta thấy không có giá trị x,y,z thỏa mãn đề bài

Xét \(x+y⋮2005\)

\(\Rightarrow\frac{2005}{x+y}=\frac{1}{h^2}\left(h\inℕ^∗\right)\)

Tương tự \(\frac{2005}{y+z}=\frac{1}{m^2},\frac{2005}{x+z}=\frac{1}{n^2}\left(m,n\inℕ^∗\right)\)

Để \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên thì

\(\frac{1}{h}+\frac{1}{m}+\frac{1}{n}⋮3\)

\(\Rightarrow2005⋮3\)(vô lí)

Vậy không có giá trị x,y,z nguyên dương thỏa mãn đề bài

P/s: Em không biết đúng không nữa, mong cô sửa hộ

Trần Linh Trang
Xem chi tiết
Nguyễn Lương Bảo Tiên
30 tháng 7 2015 lúc 10:41

a) Tổng các số x là (-2004) + (-2003) + ... + 0 + ... + 2003 + 2004 + 2005

= (-2004 + 2004) + (-2003 + 2003) + ... + 0 + 2005 = 2005

b) Tích các số x là (-2004).(-2003).....0.....2003.2004.2005 = 0

Đinh Văn Mẫn
Xem chi tiết
buitunganhlpk
Xem chi tiết
nguyen thi bao tien
Xem chi tiết
Agatsuma Zenitsu
23 tháng 1 2020 lúc 12:51

Từ giả thiết ta suy ra được:

\(\left(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}\right)+\left(\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}\right)+\left(\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}\right)=0\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\left(1\right)\)

Vì: \(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}>0\)

Và: \(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}>0\)

Và: \(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}>0\)

Từ \(\left(1\right)\Rightarrow x=y=z=0\)

Vậy từ trên ta suy ra \(x^{2005}+y^{2005}+z^{2005}=0\)

(Làm đại :D)

Khách vãng lai đã xóa
Vũ Thị Trang
Xem chi tiết
gessrdgdr
3 tháng 8 2016 lúc 19:13

ngu the . bang 2500.2bang 5000

vũ tiền châu
31 tháng 12 2017 lúc 10:36

bạn kia làm sai rồi, tích các số nguyên x thỏa mãn đề bài cơ mà

ta thấy từ -2005 đến 2005 sẽ tônd tại 1 giá trị của x =0 => tích các số nguyên x thỏa mãn đề bài sẽ =0

^_^

Lê Minh Tú
31 tháng 12 2017 lúc 10:36

Chẹp chẹp, liệt kê dài lắm thôi để cố

Vì \(-2005< x\le2005\)

Vậy: \(x=\left\{-2004;-2003;-2002;-2001;-2000;.....;2000;2001;2002;2003;2004;2005\right\}\)

Phương Nguyên
Xem chi tiết
tam mai
21 tháng 7 2019 lúc 20:46

x={ -2004; -2003; -2002;....2005}

Darlingg🥝
21 tháng 7 2019 lúc 20:54

x=(2004 ; -2003 ;-2002;............2005)

Bài này dễ vậy mk ko làm được à

~Study well~ :)

라리사 마노반 (Team BLIN...
21 tháng 7 2019 lúc 21:13

X=(2004 ; -2003 ;- 2002;......................2005)

Hok tốt!!!!!

Hoàng Thị Giang
Xem chi tiết
Lê Hiển Vinh
21 tháng 8 2016 lúc 9:02

Ta có: \(2006^x=2005^y+2004^z>1\)

\(\Rightarrow x\ge1\)

Vì \(2006^x\) là số chẵn, \(2005^y\) là số lẻ 

nên \(2004^z\) là số lẻ

\(\Rightarrow z=0\)

Lúc đó, ta có phương trình: \(2006^x=2005^y+1\)

Lại có: \(\hept{\begin{cases}2005\equiv1\left(mod4\right)\Rightarrow2005^y+1\equiv2\left(mod4\right)♣\\2006=4m+2\Rightarrow2006^x=4k+2^x\end{cases}}\) 

Với \(x\ge2\) thì \(2006^x\) chia hết cho 4, mâu thuẫn với ♣.

      Vậy \(x=y=1;z=0\)

Uzumaki Naruto
21 tháng 8 2016 lúc 9:00

Có 1 trường hợp là \(x=1;y=1;z=0\)

soyeon_Tiểu bàng giải
21 tháng 8 2016 lúc 9:05

+ Với x = 0 thì 2006x = 20060 = 1, vô lí vì 2005y + 2004z > hoặc = 2

=> x > 0

=> 2006x là số chẵn mà 2005y luôn lẻ với mọi y là số tự nhiên

=> 2004z là số lẻ => z = 0

Ta có: 2006x = 2005y + 20040 = 2005y + 1

+ Ta thấy với x = 1; y = 1 thỏa mãn đề bài: 2006 = 2005 + 1, chọn

+ Với x, y > 1

Do 2005 chia 4 dư 1, mũ lên bao nhiêu vẫn chia 4 dư 1 => 2005y chia 4 dư 1

Mà 1 chia 4 dư 1 => 2005y + 1 chia 4 dư 2, vô lí vì 2006x với x > 1 chia hết cho 4

Vậy x = 1; y = 1; z = 0