Haỹ chứng minh rằng:
Không tồn tại số hữu tỉ dương nhỏ nhất, giúp mk với😭
Chứng minh rằng:không tồn tại đa thức f(x)có hệ số nguyên mà f(8!)=2012 va f(9!)=2072.
Bài 1 : Chứng minh :
Nếu x là một số hữu tỉ thì tồn tại 1 số nguyên dương a sao cho a.x là 1 số nguyên dương . Nếu x là một số sao cho tồn tại 1 số nguyên dương a sao cho a.x là 1 số nguyên thì x là 1 số hữu tỉchứng minh rằng không tồn tại 3 số hữu tỉ a, b, c sao cho
ab=13/15; bc=11/3; ac=-3/13
giúp mk nha
Chứng minh rằng giữa hai số hữu tỉ luôn luôn tồn tại 1số hữu tỉ
Chứng minh cái này cho nó lẹ
a/b < (a+c)/(b+d) < c/d
Đấy số ở giữa đấy
a)có tồn tại hay ko hai số dương a,b khác nhau sao cho: 1/a - 1/b = 1/a-b
b) chứng minh không tồn tại hai số hữu tỉ x,y trái dấu không đối nhau thảo mãn 1/x+y = 1/x + 1/y
a thì chắc không tồn tại rồi
Còn b thì không biết
chứng minh rằng giữa 2 số vô tỉ luôn tồn tại 1 số hữu tỉ
chứng minh rằng giữa 2 số vô tỉ luôn tồn tại 1 số hữu tỉ
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaafffffffffffffffffffffffffffffffffff
fffffffffffffffffffffffffffffff
faaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhoooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooossssssssssssssssssssssssssssssssssssssss
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaooooooooooooooooooooooooooooooooooooooooooooooooooooooo
Giả sử a, b là số hữu tỉ dương, ngoài ra b không là bình phương của số hữu tỉ nào. Chứng minh rằng tồn tại số hữu tỉ c, d sao cho:
\(\sqrt{a+\sqrt{b}}=\sqrt{c}+\sqrt{d}\) thì \(a^2-b\) là bình phương của một số hữu tỉ. Điều ngược lại có đúng không?
Chứng minh rằng không tồn tại số hữu tỉ x^2=2013
\(x^2=2013\Leftrightarrow x=\sqrt{2013};x=-\sqrt{2013}\)
+ Giả sử có x = a/b ; với a;b thuộc Z ;b khác 0 và (a;b) =1=> \(\sqrt{2013}=\frac{a}{b}\Leftrightarrow a^2=2013.b^2\)=> a chia hết cho 2013
a =2013k => (2013k)2 =2013.b2 => 2013.k2 =b2 => b chia hết cho 2013
=> (a;b) =2013 => Trái với giả sử (a;b) =1
=> x không là số hữu tỉ => x là số vô tỉ