Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minatozaki Sana
Xem chi tiết
Lê Xuân Anh
25 tháng 12 2016 lúc 21:09

Giá trị lớn nhất của đa thức E=-x^2-4x-y^2+2y

Lê Xuân Anh
25 tháng 12 2016 lúc 21:32

1

 

hoanghongnhung
Xem chi tiết
tran anh thu
25 tháng 3 2018 lúc 14:41

e cunho tui ko ba

MInemy Nguyễn
Xem chi tiết
Đỗ Văn Thành Đô
Xem chi tiết
Nguyễn Quốc Khánh
16 tháng 12 2015 lúc 21:20

Ta có

\(3x=2y=>y=\frac{3}{2}x\)

Ta có

\(\frac{x}{yz}:\frac{y}{zx}=\frac{x}{yz}.\frac{zx}{y}=\frac{x^2}{y^2}=\frac{x^2}{\left(\frac{3}{2}x\right)^2}=\frac{x^2}{\frac{9}{4}x^2}=\frac{4}{9}\)

tick nha

Uzumaki Naruto
Xem chi tiết
Nguyễn Huy Tú
10 tháng 12 2020 lúc 22:38

Xét từng mẫu của phân thức trên ta thu được : 

 \(xy-2x-2y+4=x\left(y-2\right)-2\left(y-2\right)=\left(x-2\right)\left(y-2\right)\)

\(yz-27-2z+4=yz-27-2z+4\)

\(zx-2z-2x+4=z\left(x-2\right)-2\left(x-2\right)=\left(z-2\right)\left(x-2\right)\)

Vậy ta có điều kiện sau : \(x\ne2;y\ne2;z\ne2\)( đpcm )

Khách vãng lai đã xóa
Lưu Thị Bằng
Xem chi tiết
Edogawa Conan
21 tháng 10 2020 lúc 21:30

Từ: \(xy+yz+xz=xyz\) <=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(A=\frac{1}{x+2y+3z}+\frac{1}{2x+3y+z}+\frac{1}{2x+y+2z}\)
Áp dụng bđt: \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) (tự cm đúng)

Ta có: \(\frac{1}{x+2y+3z}=\frac{1}{x+z+2y+2z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{2y+2z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{2y}+\frac{3}{2z}\right)\) (1)

CMTT:  \(\frac{1}{2x+3y+z}\le\frac{1}{16}\left(\frac{1}{2x}+\frac{1}{z}+\frac{3}{2y}\right)\) (2)

\(\frac{1}{3x+y+2z}\le\frac{1}{16}\left(\frac{3}{2x}+\frac{1}{y}+\frac{1}{2z}\right)\)(3)

Từ (1); (2) và (3) cộng vế theo vế

\(A\le\frac{1}{16}\left(\frac{3}{2z}+\frac{1}{x}+\frac{1}{2y}+\frac{3}{2y}+\frac{1}{z}+\frac{1}{2x}+\frac{3}{2z}+\frac{1}{y}+\frac{1}{2z}\right)\)

\(A\le\frac{3}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3}{16}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y+2z\\z=2x+y\\y=x+2z\end{cases}}\) <=> x = y = z = 0

mà x;y;z > 0 => Dấu "=" ko xảy ra 

=> A < 3/16

Khách vãng lai đã xóa
Bùi Hải Đoàn
Xem chi tiết
Nguyễn Trí Đức
Xem chi tiết
Huỳnh Tân Huy
Xem chi tiết