Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nuyen Thanh Dang
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 7 2018 lúc 4:07

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a. Nối AC và kẻ DH ⊥ AC

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

A C 2 = A B 2 + B C 2 = 12 2 + 12 2  = 144 + 144 = 288

Suy ra: AC = 12 2 (cm)

Ta có: ∆ ACD cân tại D

DH ⊥ AC

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 9 2019 lúc 14:38

Vậy S d i ề u = S A B C + S A D C = 72 + 197 , 817 = 269 , 817 c m 2

nguyễn hoàng lê thi
Xem chi tiết
Le Thanh Mai
27 tháng 12 2018 lúc 1:22

Xét ΔABC có:

.AB=BC=12cm

.\(\widehat{ABC}=90^o\)

➜ΔABC vuông cân tại B

➜AC=AB\(\sqrt{2}\) =12\(\sqrt{2}\) (cm)

Gọi H là trung điểm AC

➜AH=6\(\sqrt{2}\) (cm)

Xét ΔADC có: AD=DC

➜ΔADC cân tại D

mà: H là trung điểm AC

➜DH là đường cao, cũng là đường phân giác của ΔADC

\(\widehat{ADH}=20^O\)

\(\sin\widehat{ADH}=sin20^o=\dfrac{AH}{AD}\)

\(AD=\dfrac{AH}{\sin20^o}=\dfrac{6\sqrt{2}}{\sin20^o}=24,8\left(cm\right)\)

b, SABCD= SABC+SADC

SABCD = \(\dfrac{1}{2}.AB.BC+\dfrac{1}{2}.AC.DH\)

\(\cos\widehat{ADH}=\dfrac{DH}{AD}=\cos20^O\)

\(DH=\cos20^O.AD=\cos20^O.24,8=23,3\left(cm\right)\)

SABCD= \(\dfrac{1}{2}.12.12+\dfrac{1}{2}.12\sqrt{2}.23,3=269,7\left(cm^2\right)\)

Sách Giáo Khoa
Xem chi tiết
Hoàng Lê Khánh Uyên
23 tháng 12 2017 lúc 13:17

a) Nối AC và kẻ DH⊥ACDH⊥AC

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

AC2=AB2+BC2=122+122=144+144=288AC2=AB2+BC2=122+122=144+144=288

Suy ra: AC=12√2(cm)AC=122(cm)

Ta có: tam giác ACD cân tại D

DH⊥ACDH⊥AC

Suy ra: HA=HC=AC2=6√2(cm)HA=HC=AC2=62(cm)

ˆADH=12ˆADC=20∘ADH^=12ADC^=20∘

Trong tam giác vuông ADH, ta có:

AD=AHsinˆADH=6√2sin20∘≈24,809(cm)AD=AHsin⁡ADH^=62sin⁡20∘≈24,809(cm)

b) Ta có:

SABC=12.AB.BC=12.12.12=72SABC=12.AB.BC=12.12.12=72 (cm2)

Trong tam giác vuông ADH, ta có:

DH=AH.cotgˆADH=6√2.cotg20∘≈23,313(cm)DH=AH.cot⁡gADH^=62.cot⁡g20∘≈23,313(cm)

Mặt khác:

SADC=12.DH.AC≈12.23,313.12√2=197,817SADC=12.DH.AC≈12.23,313.122=197,817 (cm2)

Vậy Sdiều =SABC+SADC=72+197,817=269,817=SABC+SADC=72+197,817=269,817 (cm2)



Hoàng Đức Minh
23 tháng 12 2017 lúc 18:10

a, nối AC rồi kẻ

Áp dụng định lý Pi-ta-go vào tam giác vuông ABC:

Suy ra:

ta có:tam giác ABC cân tại D

Suy ra:

Trong tam giác vuông ADH, ta có

b, Ta có:

(cm2)

Trong tam giác vuông ADH, ta có:

Mặt khác

(cm2)

Vậy S (cm2)

Mymy Hoàng
Xem chi tiết
Kim Tae Yong
13 tháng 9 2018 lúc 22:10

đúng 0?

Khương Vũ Phương Anh
Xem chi tiết
Vi Phạm
9 tháng 6 2017 lúc 8:47

Do góc <DAB = <CBD =90 độ và <ABD = < BDC (do AB//CD) 
-> Tam giác ADB và BCD đồng dạng 

=> AD/BC = DB/CD <-> AD.CD=BC.DB <-> BC.DB = 12.25 =300 (1) 

Mặt khác do tam giác DBC vuông tại B nên theo định lý Pitago : 
BD^2+BC^2=CD^2 
hay BC^2+BD^2 =625 (2) 

Từ (1) và (2) ta giải hệ thì có BC, BD: 
BD^2+ (300/BD)^2=625 -> BD^4 - 625 BD^2 +900 = 0 -> BD^2 = (625+can( 387025))/2 ( loại nghiệm còn lại do BD là cạnh huyền của tam giác vuông ABD nên BD^2 > AD^2 =144) 
-> BD = can( (625+can( 387025))/2 ) 
-> BC = 3000/BD

๖ACE✪Hoàngミ★Việtツ
15 tháng 8 2017 lúc 20:55

Do góc <DAB = <CBD =90 độ và <ABD = < BDC (do AB//CD) 
-> Tam giác ADB và BCD đồng dạng 

=> AD/BC = DB/CD <-> AD.CD=BC.DB <-> BC.DB = 12.25 =300 (1) 

Mặt khác do tam giác DBC vuông tại B nên theo định lý Pitago : 
BD^2+BC^2=CD^2 
hay BC^2+BD^2 =625 (2) 

Từ (1) và (2) ta giải hệ thì có BC, BD: 
BD^2+ (300/BD)^2=625 -> BD^4 - 625 BD^2 +900 = 0 -> BD^2 = (625+can( 387025))/2 ( loại nghiệm còn lại do BD là cạnh huyền của tam giác vuông ABD nên BD^2 > AD^2 =144) 
-> BD = can( (625+can( 387025))/2 ) 
-> BC = 3000/BD

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

xĩnhinh
Xem chi tiết
Mansaian
Xem chi tiết