cho b = 6+16+162+163+........169
chứng tỏ rằng: B chia hết cho 2, B chia hết cho 5
1)Chứng minh rằng Tổng của 5 số tự nhiên liên tiếp luôn chia hết cho 5 còn tổng 6 số liên tiếp không chia hết cho 6
2)Cho (16.a+17.b)chia hết cho11 Chứng minh rằng (17.a+16.b)chia hết cho11
cho A = 6 + 16 +162+163+...+168+169
Chứng tỏ rằng A vừa chia hết cho 2 vừa chia hết cho 5
cho A = 6 + 16 +162+163+...+168+169
Chứng tỏ rằng A vừa chia hết cho 2 vừa chia hết cho 5
Câu1 :Cho ba STN a, b, c không chia hết cho 4. Khi chia 4 được số dư khác nhau. Chứng minh a+b+c không chia hết cho 4.
Câu 2: Chứng tỏ rằng :
a) Số có dạng aaa aaa chia hết cho 7 và 37.
b) a+3.b chia hết cho 2 với a+b chia hết cho 2 ( a,b thuộc N )
Câu 3 :Chứng tỏ rằng :
a) 81 mũ 7 - 27 mũ 9 - 9 mũ 13 chia hết cho 45.
b) 16 mũ 5 + 2 mũ 15 chia hết cho 33
c) 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + .....+ 2 mũ 60 chia hết cho 15 và 21.
cho A = 6+16+162+163+164+165+166+167+168+169. Chứng tỏ rằng A vừa chia hết cho 2, vừa chia hết cho 5
ví 6+16= 22 chia hết cho 2 nên tổng đó chia hết cho 2 (ghi lại tổng trên)
nên A chia hết cho 2
vì 6+ 16+162+163+164=69910 chia hết cho 5 nên tổng đó chia hết cho 5 ( ghi lại tổng : 6+16+...+169)
nên A chia hết cho 5
vậy A vừa chia hết cho 2, vừa chia hết cho 5
Vì 6+16= 22 chia hết cho 2 nên tổng đó chia hết cho 2 (ghi lại tổng trên)
Nên A chia hết cho 2
Vì 6+ 16+162+163+164=69910 chia hết cho 5 nên tổng đó chia hết cho 5 ( ghi lại tổng : 6+16+...+169)
Nên A chia hết cho 5
Vậy A vừa chia hết cho 2, vừa chia hết cho 5
Câu 1 : A=1+3+3^2+3^3+3^4...+3^300+3^301+3^302 có chia hết cho 13 ko
Câu 2: A=6+16+16^2+16^3+...+16^8+16^9 chứng tỏ rằng A vừa chia hết cho 2 vừa chia hết cho 5
Bài 2: Chứng minh rằng: n2+n+6 chia hết cho 2
Bài 3: Chứng minh rằng: n3+5n chia hết cho 6
Bài 4: Chứng minh rằng: (n+20122013).(n+20132012) chia hết cho 2
Bài 5: Chứng tỏ rằng
a, 1038+8 chia hết cho 18
b, 1010+14 chia hết cho 16
Các bạn giúp mình nhé.
Chứng minh rằng:
a)5+5^2+5^3+...+5^100 chia hết cho 6
b)2+2^2+2^3+...+2^100 chia hết cho 31
c)16^5+2^15 chia hết cho 33
a) \(5+5^2+5^3+....+5^{100}\)
đặt \(A=5+5^2+5^3+....+5^{100}\) ( \(A\) có \(100\) số hạng )
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\) ( có \(100\div2=50\) nhóm )
\(A=5\left(1+5\right)+5^3\left(1+5\right)+....+5^{99}\left(1+5\right)\)
\(A=5.6+5^3.6+....+5^{99}.6\)
\(A=6\left(5+5^3+....+5^{99}\right)\)
vì \(6⋮6\Rightarrow6\left(5+5^3+....+5^{99}\right)⋮6\Rightarrow A⋮6\)
b) \(2+2^2+2^3+....+2^{100}\)
đặt \(B=2+2^2+2^3+....+2^{100}\) ( \(B\) có \(100\) số hạng )
\(B=\left(2+2^2+2^3+2^4+2^5\right)+.....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) ( có \(100\div5=20\) nhóm )
\(B=2\left(1+2+2^2+2^3+2^4\right)+....+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(B=2.31+....+2^{96}.31\)
\(B=31\left(2+...+2^{96}\right)\)
vì \(31⋮31\Rightarrow31\left(2+...+2^{96}\right)\Rightarrow B⋮31\)
a) 5+5^2+5^3..+5^100
=(5+5^2)+(5^3+5^4)+....+(5^99+5^100)
=5.(1+5)+5^3.(1+5)+....+5^99.(1+5)
=5.6+5^3.6+.....+5^99.6
=6.(5+5^3+.....+5^99):6
Bài 1 : Cho a chia 6 dư 2
b chia 6 dư 2
Chứng tỏ rằng: ( a-b)chia hết cho 6
Bài 2 : Cho a chia cho 9 dư 1
b chia 9 dư 3
c chia 9 dư 5
Chứng tỏ rằng : ( a+b+c) chia hết cho 9
Bài 3: Cho A+B+C=110
A-B-C=2
B-15=C+15
Tìm A;B;C
Bài 4: Cho a chia 5 dư 4
b chia 5 dư 3
c chia cho 5 dư 1
Chứng tỏ rằng : ( a-b-c) chia hết cho 5
bài 1:vì:số dư 2 trừ số dư 2 = số dư 0,0 ko có giá trị
bài 2:vì:số dư 1 cộng số dư 3 cộng số dư 5 = số dư 9,9 chia hết cho 9
bài 3:có lẽ là lỗi đề chứ mình chịu
bài 4:vì:số dư 4 trừ số dư 3 -số dư 1= số dư 0,0ko có giá trị
học tốt bạn nhé