Tính A = \(\frac{7.\left(4^6.9^5+6^9.120\right)}{-8^4.3^{12}-6^{11}}\)
\(\frac{7.\left(4^6.9^5+6^9.120\right)}{-8^4.3^{12}-6^{11}}\)= bn?
Gía trị biểu thức :\(\frac{7.\left(4^6.9^5+6^9.120\right)}{-8^4.3^{12}-6^{11}}\)
Gía trị của biểu thức : \(\frac{7.\left(4^6.9^5+6^9.120\right)}{-8^4.3^{12}-6^{11}}\)
\(\frac{4^6.9^5+6^9.120}{\left(-6\right)^{11}-8^4.3^{12}}\)= ?
\(=\frac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{\left(-6\right)^{11}-2^{12}\cdot3^{12}}=\frac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{\left(-6\right)^{11}-6^{12}}=\frac{2^{12}\cdot3^{10}\cdot\left(1+5\right)}{\left(-6\right)^{11}\left(1+6\right)}=\frac{6^{10}\cdot2^2\cdot2\cdot3}{\left(-6\right)^{11}\cdot7}=\frac{6^{11}\cdot4}{\left(-6\right)^{11}\cdot7}=\frac{-4}{7}\)
Giá trị của biểu thức \(\frac{7.\left(4^6.9^5+6^9.120\right)}{-8^4.3^{12}-6^{11}}\)Bằng?
x= \(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}\)
x=\(\frac{\left(-5\right)^3.24^4}{\left(-45\right)^2.16^3}\)
Tính B=\(\frac{\left(\frac{2}{3}\right)^3.\left(\frac{-3}{4}\right)^2.\left(-1\right)^5}{\left(\frac{2}{5}\right)^2.\left(\frac{5}{12}\right)^2}-\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
giúp mình giải chi tiết nha các bạn mai mình phải nộp rồi
qwertyuiopasdfgggggghjkllzxcvbnmm,.//234567890-=`
Tính :
\(A=\frac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}\)
Ta có : \(A=\frac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+2^9.3^9.2^3.3.5}{-\left(2^3\right)^4.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{-2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}\left(-2.3-1\right)}=\frac{2\left(1+5\right)}{3\left(-6-1\right)}=\frac{2.6}{3.\left(-7\right)}=\frac{-12}{21}\)
Tính \(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}\)
\(=-\dfrac{2^{12}\cdot3^{10}+3^9\cdot2^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=-\dfrac{2^{12}\cdot3^{10}+3^{10}\cdot2^{12}\cdot5}{2^{11}\cdot3^{11}\cdot7}\)
\(=-\dfrac{3^{10}\cdot2^{12}\cdot6}{2^{11}\cdot3^{11}\cdot7}=-\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{-12}{21}=-\dfrac{4}{7}\)