Cho x,y,z >0
CM Xy/z+xz/y+zy/x>=z+y+z
Giúp minh với
Cho x,y,z>0
CM xy/z+xz/y+zy/x>=x+y+z
Giupa mình vơia
Bất đẳng thức Cauchy-Schwarz
\(\frac{xy}{z}+\frac{yz}{x}\ge2y\left(1\right)\)
\(\frac{yz}{x}+\frac{zx}{y}\ge2x\left(2\right)\)
\(\frac{yz}{x}+\frac{zx}{y}\ge2z\left(3\right)\)
Cộng vế (1) ; (2) và (3) và chia mỗi vế cho 2
\(\Rightarrow\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge x+y+z\left(đpcm\right)\)
Giúp tớ với:
Cho x+y+z= 0 xy+yz+xz = 0 Chứng minh: x=y=z
Vì 0xy+yz+xz=0.Nên:X,y,z đều bằng 0 và bằng nhau.
cho x,y,z thuộc R Tm: xy+zy+xz+2x+2y+2z=45 CM: X^2+y^2+z^2>= 27
Ta có BĐT \(x^2+1\ge2x\Leftrightarrow\left(x-1\right)^2\ge0\forall x\in R\)
Tương tự: \(y^2+1\ge2y;z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)
Và BĐT \(x^2+y^2+z^2\ge xy+yz+xz\left(2\right)\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\in R\)
Cộng theo vế 2 BĐT (1);(2) ta có:
\(2\left(x^2+y^2+z^2\right)+3\ge45\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge42\Rightarrow x^2+y^2+z^2\ge21\)
Khi x=y=z=1
Sửa đề : cho \(CM:x^2+y^2+z^2\ge21\)
Ta có : \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xy-2xz\ge0\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz\ge0\)
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)(1)
Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2+z^2-2x-2y-2z+3\ge0\)
\(\Rightarrow x^2+y^2+z^2\ge2x+2y+2z-3\)(2)
Cộng vế với vế của (1); (2) lại ta được :
\(2\left(x^2+y^2+z^2\right)\ge xy+yz+xy+2x+2y+2z-3\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge45-3=42\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{42}{2}=21\)(đpcm)
(\sqrt((x+yz)(y+xz)))/(xy+z)+(\sqrt((y+xz)(z+xy)))/(x+yz)+(\sqrt((x+yz)(z+xy)))/(y+xz)
Với x,y,z>0 thỏa mãn x+y+z=1
Thực hiện phép tính:(1)/((y-z)(x^2+xz-y^2-yz))+(1)/((z-x)(y^2+zy-z^2-xz))+(1)/((x-y)(x^2+yz-z^2-xy|)
Cho x, y, z là các số nguyên thoả mãn x + xy + y = 1 ; y + zy + z = 3; z + xz + x = 7. Tính giá trị
của biểu thức M = x + y^2 + z^3
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y+1=2\\yz+y+z+1=4\\zx+z+x+1=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(z+1\right)\left(x+1\right)=8\end{matrix}\right.\) (1)
Nhân vế với vế
\(\Rightarrow\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\pm8\)
- Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\) (2) chia vế cho vế của 2 với từng pt của (1) ta được:
\(\left\{{}\begin{matrix}z+1=4\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\\z=3\end{matrix}\right.\)
- Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\) (2) chia vế cho vế của (2) cho từng pt của (1)
\(\Rightarrow\left\{{}\begin{matrix}z+1=-4\\x+1=-2\\y+1=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=-2\\z=-5\end{matrix}\right.\)
Cho x+y+z=1 Tìm max S=\(\frac{x}{x+zy}+\frac{y}{y+xz}+\frac{z}{z+xy}\)
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+xy+yz}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
cm biết x y z >0
#)Góp ý :
Mời bạn tham khảo :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Mình sẽ gửi link này về chat riêng cho bạn !
Tham khảo qua đây nè :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017
tk cho mk nhé
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)Cho các số thực x,y,z\(\ne\)0(sau). Tính giá trị biểu thức M\(=\frac{x^{^2}+y^2+z^2}{xy+yz+xz}\). Giúp mình với.
\(x;y;z\ne0\). Giả thiết của đề bài:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{z+x}\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{z}\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}.\)
=> x = y = z
Do đó, M = 1.