Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thom nguyen
Xem chi tiết
Bui Cam Lan Bui
21 tháng 10 2015 lúc 20:55

cái chữ viết to đùng 

Bui Cam Lan Bui
Xem chi tiết
thom nguyen
Xem chi tiết
phương Phan
Xem chi tiết
phương Phan
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 10 2018 lúc 13:54

a, Chứng minh:  A B E ^ = A D E ^

b, Chứng minh được:  A C B ^ = B N M ^

=> C, D, E nhìn AB dưới góc bằng nhau nên A, B, C, D, E cùng thuộc một đường tròn

=> BC là đường kính =>  B E C ^ = 90 0

Ngô Mai Bích	Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 1 2023 lúc 21:57

a: \(AB=\sqrt{15^2-12^2}=9\left(cm\right)\)

b: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có

BM chung

góc ABM=góc NBM

=>ΔBAM=ΔBNM

=>MA=MN

c: Xét ΔBDC có

BE là đừog cao, là phân giác

nên ΔBDC cân tại B

=>BD=BC

BA+AD=BD

BN+NC=BC

mà BD=BC; BA=BN

nên AD=NC

Thanh Tùng DZ
Xem chi tiết
Cô Hoàng Huyền
17 tháng 4 2018 lúc 9:10

a) Xét tam giác ACK và tam giác FAM có :

AC = FA

\(\widehat{CAK}=\widehat{AFM}\)  (Cùng phụ với góc \(\widehat{FAK}\)  )

\(\widehat{ACK}=\widehat{FAM}\)   (Cùng phụ với góc \(\widehat{DAC}\)  )

\(\Rightarrow\Delta ACK=\Delta FAM\left(g-c-g\right)\)

b) Do \(\Delta ACK=\Delta FAM\left(cma\right)\Rightarrow FM=AK\)

Chứng minh hoàn toàn tương tự câu a ta có: \(\Delta ABK=\Delta EAM\left(g-c-g\right)\)

\(\Rightarrow ME=AK\)

Từ đó suy ra FM = ME hay M là trung điểm EF.

c) Kéo dài FB cắt EC tại J. Ta chứng minh \(\widehat{FJE}=90^o\)

Xét tam giác FAB và tam giác CAE có:

FA = CA

AB = AE

\(\widehat{FAB}=\widehat{CAE}\)   (Cùng phụ với góc \(\widehat{BAC}\)  )

\(\Rightarrow\Delta FAB=\Delta CAE\left(c-g-c\right)\)

\(\Rightarrow FB=CE\) và \(\widehat{AFB}=\widehat{ACE}\)

Xét tứ giác AFJE có:

\(\widehat{AFJ}+\widehat{FJE}+\widehat{JEA}+\widehat{EAF}=360^o\)

\(\Rightarrow\widehat{ACE}+\widehat{FJE}+\widehat{CEA}+\widehat{EAC}+90^o=360^o\)

\(\Rightarrow\widehat{FJE}+\widehat{ACE}+\widehat{CEA}+\widehat{EAC}=270^o\)

\(\Rightarrow\widehat{FJE}+180^o=270^o\)

\(\Rightarrow\widehat{FJE}=90^o\)

Vậy nên \(FB\perp EC\) (đpcm).

Nguyễn Tất Đạt
17 tháng 4 2018 lúc 11:35

Bài 2:

A B C H I M N B' C' D E

a) Gọi giao điểm của đường phân giác ^ABC và ^ACB với AC và AB lần lượt là E và D

Dễ thấy: ^BAH=^ACB (Cùng phụ với ^HAC) => 1/2. ^BAH = 1/2. ^ACB

=> ^DAM=^ACD. Mà ^DAM+^MAC=^BAC=900 => ^ACD+^MAC=900 => AM \(\perp\)CD

hay NI\(\perp\)AM. 

Tương tự ta chứng minh MI\(\perp\)AN

Xét tam giác MAN: NI\(\perp\)AM; MI\(\perp\)AN => I là trực tâm của tam giác MAN (đpcm).

b) Do I là trực tâm của tam giác AMN (cmt) => AI\(\perp\)MN hay AI\(\perp\)B'C'

Ta có: Tam giác ABC có 2 đường phân giác ^ABC và ^ACB cắt nhau tại I => AI là phân giác ^BAC

=> AI là phân giác ^B'AC'.

Xét tam giác AB'C': AI là phân giác ^B'AC'. Mà AI\(\perp\)B'C' => Tam giác AB'C' cân tại A

 Lại có: ^B'AC'=900 => Tam giác B'AC' vuông cân tại A.

Thanh Tùng DZ
17 tháng 4 2018 lúc 12:38

Câu hỏi của SKT_NTT - Toán lớp 7 - Học toán với OnlineMath    bài này câu c làm thế nào nhỉ

Vũ Hạnh Vân
Xem chi tiết
Lê Nhật Khôi
26 tháng 3 2020 lúc 10:46

Sửa lại đề Từ I kẻ đường thẳng song song AC cắt AB,BC lần lượt tại M,N

Vì MN//AC nên: \(\widehat{ACB}=\widehat{INB}\)(đồng vị)

Mà BIND là tứ giác nội tiếp nên: \(\widehat{ADB}=\widehat{INB}\)

Cho nên: \(\widehat{ACB}=\widehat{ADB}\)

Suy ra: ABDC là tứ giác nội tiếp

Đồng thời: \(\widehat{ADE}=\widehat{NBI}=\widehat{ABE}\Rightarrow\)ABDE là tứ giác nội tiếp

Vậy A,B,C,D,E cùng thuộc một đường tròn 

Hơn nữa: tam giác ABC vuông tại A

Suy ra: BC là đường kính của đường tròn ngoại tiếp ngũ giác ABDCE

Vậy BE vuông góc CE

Hình vẽ:(Mình k chắc nó có hiện ra k nha )

Khách vãng lai đã xóa
Phan Tiến Nghĩa
7 tháng 4 2020 lúc 21:42

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

Khách vãng lai đã xóa