Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Soái ca 2k6
Xem chi tiết

a) theo đề bài \(\overline{ab}=3ab\)

\(\Rightarrow10a+b=3ab\)                                                                (1)

\(\Rightarrow10a+b⋮a\)

\(\Rightarrow b⋮a\)

b) do \(b=ka\Rightarrow k< 10\)thay \(b=ka\)vào (1)

\(10a+ka=3a.ka\)

\(\Rightarrow10+k=3ak\)                                                                    (2)

\(\Rightarrow10+k⋮k\)

\(\Rightarrow10⋮k\)

c) do \(k< 10\Rightarrow k\in\left\{1;2;5\right\}\)

với\(k=1\), thay vào(2) : 11 =3a ,loại

với \(k=2\),thay vào (2) : 12 = 6a=>a=2

 \(b=ka=2.2=4\) ta có \(\overline{ab}=24=3.2.4\)

với \(k=5\)thay vào (2) : 15 =15a=>a=1;\(b=ka=5.1=5\)

ta có \(\overline{ab}=15=3.1.5\)

đáp số 24 và 15

Nguyễn Văn phong
Xem chi tiết
Nguyễn Thị Thùy Dương
7 tháng 11 2015 lúc 6:34

a) ab =10a + b = 3ab =>b=  a(3b - 10)   =>   b  chia hết cho a

b) b= ak =>                 ak = a(3ak -10)  => k= 3ak -10  => k(3a-1) = 10 => 10 chia hết cho  k

c) theo câu b)    k =1; 2;5

 k=1 => a=b  mà  b=a(3b-10) => 3b -10 =1 => b =11/3  loại

 k= 2 => b =2a  =>  2a =a(3b-10)  => 3b-10 =2 => b =4 => a=2

k =5 => b =5a => a =1 => b=5  loại       51 khac 3.5.1

Vậy số ab =24

Lê Thị Hoàng Anh
Xem chi tiết
Yen Nhi
29 tháng 5 2021 lúc 14:40

10a + b = 3. a. b (*)

Cho số tự nhiên ab bằng ba lần tích các chữ số của nó nên số tự nhiên ab chia hết cho a; mà 10a cũng chia hết cho a nên để 10a + b chia hết cho a thì b cũng phải chia hết cho a => b chia hết cho a

Thay b = ka vào (*) ta được:

10a + ka = 3aka

<=> a . ( 10 + k ) = 3aka

<=> 10 + k = 3ak (* *)

=> 10 + k chia hết cho k

Vì k chia hết cho k nên để 10 + k chia hết cho k thì 10 chia hết cho k

=> k là Ư(10)

k là Ư(10), k ∈ N nên k ∈ { 1, 2, 5 }

Thay k vào (**) ta được hai trường hợp: a = 2 và b = 4 và a = 1 và b = 5 

Vậy số ab trên là 24 và 15

Khách vãng lai đã xóa
Đỗ Thị Bảo Ngoc
13 tháng 8 2021 lúc 15:41

Xin chào :)

Khách vãng lai đã xóa
Hiền Đỗ
Xem chi tiết
Chu Ngọc Bảo Hân
29 tháng 10 2018 lúc 20:08

a) Ta có : ab = 3(a.b)

suy ra 10a+b=3ab suy ra 10a+b chia hết cho a

mà 10a chia hết cho a

suy ra b chia hết cho a (dpcm)

b) b=ka

ta có : 10a+b=10a+ka

mà 10a+b=3ab

suy ra a.(10+k)=3ab

suy ra 10+k=3b

suy ra 10+k=3ka mà k chia hết cho k suy ra 10 chia hết cho k suy ra k thuộc Ư(10) (dpcm)

c) 24;15

Lê Thị Hoàng Anh
Xem chi tiết
Bùi Vân Khánh
Xem chi tiết
Trịnh Thế Tài
Xem chi tiết
Kiệt Nguyễn
1 tháng 5 2019 lúc 7:26

a. Theo đề bài, ta có: ab = 3ab

\(\Leftrightarrow10a+b=3ab\) (1)

\(\Leftrightarrow\left(10a+b\right)⋮a\)

Vì \(10a⋮a\) nên \(b⋮a\left(đpcm\right)\)

b. Thay b = ka vào (1), ta được:

\(\Leftrightarrow10a+ka=3a.ka\)

\(\Leftrightarrow a\left(10+k\right)=3a.ka\)

\(\Leftrightarrow10+k=3ka\)

\(\Leftrightarrow\left(10+k\right)⋮k\)

Vì \(k⋮k\) nên \(10⋮k\)

\(\Rightarrow k\inƯ\left(10\right)\left[đpcm\right]\)

c. Vì k < 10 nên \(k\in\left\{1;2;5\right\}\)

TH1: k = 1. Suy ra 3a = 11 (loại)

TH2: k = 2. Suy ra 6a = 12 nên a = 2 và b = 4

TH3: k = 5. Suy ra 15a = 15 nên a = 1 và b = 5

Vậy có hai số ab cần tìm là 24 và 15

nguyễn minh hiếu
Xem chi tiết
nguyễn minh hiếu
Xem chi tiết
Nguyễn Quỳnh Anh
26 tháng 10 2016 lúc 13:23

huâyia