Cho hình vẽ cm a) góc AMN= góc ANM
b) chứng minh AB =AC
Cho tam giác ABC có góc B > góc C. Lấy M giữa AB, N giữa AC. Biết góc AMN = góc ANM = góc B = góc C. Chứng minh: MN song song với BC.
Cho tam giác ABC ( AB<AC ), Ax là tia phân giác trong của góc A, D là trung điểm của BC. Qua D kẻ đường thẳng vuông góc với Ax, cắt đường thẳng AB và AC lần lượt tại M và N.
a) Chứng minh góc AMN = góc ANM
b) Chứng minh BM = CN
c) Biết AB = 5cm; AC= 7cm. Tính BM?
Cho tam giác ABC ( AB<AC ), Ax là tia phân giác trong của góc A, D là trung điểm của BC. Qua D kẻ đường thẳng vuông góc với Ax, cắt đường thẳng AB và AC lần lượt tại M và N.
a) Chứng minh góc AMN = góc ANM
b) Chứng minh BM = CN
c) Biết AB = 5cm; AC= 7cm. Tính BM?
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy bất kì điểm E ( E khác B,C). Từ E vẽ EM vuông góc với AB, EN vuông góc với AC (M thuộc AB, N thuộc AC). a:Chứng minh tứ giác AMEN là hình chữ nhật b: Chứng minh góc ANM=CAE c: Chứng minh khi E thay đổi trên cạnh BC thì Diện tích tam giác MBC+ Diện tích tam giác NBC không đổi. Mọi người giúp em nhanh với ạ. Em đang cần gấp
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy bất kì điểm E ( E khác B,C). Từ E vẽ EM vuông góc với AB, EN vuông góc với AC (M thuộc AB, N thuộc AC). a:Chứng minh tứ giác AMEN là hình chữ nhật b: Chứng minh góc ANM=CAE c: Chứng minh khi E thay đổi trên cạnh BC thì Diện tích tam giác MBC+ Diện tích tam giác NBC không đổi
Cho Tam giác ABC, AB= AC, trên cạnh BC lấy điểm M và N sao cho BM=CN(M nằm giữa B và N) và AM= AN
a, chứng minh góc BAM = CAN
b, chứng minh AMN= ANM
a, Vì AB = AC => \(\Delta ABC\)cân tại A
=> \(\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta ABM\)và \(\Delta ACN\), ta có:
AB = AC (gt)
\(\widehat{ABC}=\widehat{ACB}\)(Chứng minh trên)
BM = CN (gt)
=> \(\Delta ABM=\Delta ACN\left(c.g.c\right)\)
=> \(\widehat{BAM}=\widehat{CAN}\)
Vậy \(\widehat{BAM}=\widehat{CAN}\)
b,Vì \(\Delta ABM=\Delta ACN\)(Chứng minh trên) => AM = AN
=> \(\Delta AMN\)cân tại A
\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)
Vậy \(\widehat{AMN}=\widehat{ANM}\)
Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC. a) Chứng minh tam giác AHB=tam giác AHC b) Vẽ HM vuông góc AB, HN vuông góc AC, chứng minh tam giác AMN cân c) Chứng minh MN song song với BC d) Chứng minh AH ^2 + BM^2=AN^2 +BH^2
Vẽ hộ em hình nwuax ạ
a, Xét tam giác AHB và tam giác AHC có
AH _ chung
AB = AC
Vậy tam giác AHB~ tam giác AHC (ch-cgv)
Ta có tam giác ABC cân tại A, có AH là đường cao
đồng thười là đường pg
b, Xét tam giác AMH và tam giác NAH có
HA _ chung
^MAH = ^NAH
Vậy tam giác AMH = tam giác NAH (ch-gn)
=> AM = AN ( 2 cạnh tương ứng )
c, Ta có AM/AB = AN/AC => MN // BC
d, Ta có \(AH^2+BM^2=AN^2+BH^2\)
Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)
Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)
Lại có AM = AN (cmt)
\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M)
Vậy ta có đpcm
Cho tam giác ABC có AB+AC=2BC. Gọi M và N là trung điểm của AB và AC, gọi I là giao điểm các đường phân giác trong tam giác ABC. Chứng minh góc AMN + góc ANM=180o
cho tam giác ABC cân tại A . Vẽ AH vuông góc BC . a, CM tam giác AHB = tam giác AHC . b, Vẽ HM vuông góc AB , HN vuông góc AC . CM tam giác AMN cân . c, CM MN // BC . Có vẽ hình nha mọi người
a, Xét tg AHB và tg AHC, có:
AB=AC(tg cân)
góc AHB= góc AHC(=90o)
góc B= góc C(tg cân)
=> tg AHB= tg AHC(ch-gn)
b,Xét tg BMH và tg CNH, có:
góc B= góc C(tg cân)
BH=CH(2 cạnh tương ứng)
góc BMH= góc CNH(=90o)
=> tg BMH= tg CNH(ch-gn)
Xét tg AMH và tg ANH, có:
AH chung.
góc AMH= góc ANH(=90o)
MH=HN(2 cạnh tương ứng)
=> tg AMH= tg ANH(ch- cgv)
=> AM=AN(2 cạnh tương ứng)
=> tg AMN là tg cân.
c, Ta có:tg AMN cân tại A, tg ABC cân tại A nên, suy ra:
Các góc ở đáy bằng nhau: góc B= góc C= góc AMN= góc ANM.
Mà góc AMN và góc B ở vị trí đồng vị nên, suy ra:
MN // BC.
Cho tam giác ABC vuông tại A có D là trung điểm của BC. Trên AD lấy điểm M bất kì, Gọi E và F là hình chiếu của M trên AB, AC.
1) Chứng minh EF//BC
2) Kẻ EN vuông góc với FD
a)Tính góc ANM
b) Chứng minh NE là phân giác của góc ANM
3) Chứng minh 3 điểm B, M, N thẳng hàng