Cho tam giác ABC có 3 góc nhọn , AB < AC . Gọi M là trung điểm của cạnh BC . Qua M kẻ đường thẳng vuông góc với đường phân giác trong của góc A cắt các đường thẳng AB và AC lần lượt ở D và E.
a) Chứng minh : BD = CE
b) Tính AD và BD theo AC = b , AB = c
A B C M E D O
Cho tam giác ABC cân tại A. Trên cạnh BC lấy 1 điểm D( BD < DC) .Trên tia đối của tia CB lấy điểm E sao cho BD= CE. Qua D và E kẻ các đường vuông góc với BC cắt AB và AC lần lượt tại M và N.
a) Chứng minh: DM= EN
b) Gọi I là giao điểm của MN với BC. Chứng minh: I là trung điểm của MN
c) Qua I kẻ đường vuông góc với MN cắt phân giác của góc BAC tại O.
Chứng minh: tma giác ABO= ACO
d) Chứng minh: OC vuông góc với AN
Cho tam giác ABC vuông tại A , trung tuyến AM . Qua A kẻ đường thẳng vuông góc với AM cắt đường thẳng vuông góc với BC kẻ qua B tại D , cắt đường thẳng vuông góc với BC tại E . Tia EM cắt tia DB ở I . Gọi P và Q lần lượt là giao điểm của AB và AC với ME . Chứng minh rằng :
a) Tam giác MCE = Tam giác MBI
b) Tam giác DIE cân
c) DE = BD + CE
d) PQ song song BC và PQ = 1/2 BC
Cho tam giác ABC , trung tuyến AM . Qua A kẻ đường thẳng vuông góc với AM cắt đường thẳng vuông góc với BC kẻ qua B tại D , cắt đường thẳng vuông góc với BC tại E . Tia EM cắt tia DB ở I . Gọi P và Q lần lượt là giao điểm của AB và AC với ME . Chứng minh rằng :
a) Tam giác MCE = Tam giác MBI
b) Tam giác DIE cân
c) DE = BD + CE
d) PQ song song BC và PQ = 1/2 BC
cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. Kẻ IH vuông góc vs đường thẳng AC, kẻ IK vuông góc với đường thẳng AC. Chứng minh rằng BH=CK
Cho tam giác ABC đều . Trên cạnh BC lấy điểm D , sao cho BD = 1/3 BA , qua D kẻ đường thẳng vuông góc với AB cắt BC ở E , qua E kẻ đường thẳng vuông góc với BC cắt AC ở F .
a) Chứng minh : DF vuông góc AC
b) Chứng minh : Tam giác DEF đều
c) Trên tia đối của các tia DE , FD , EF lần lượt lấy các điểm P , M ,N sao cho DF=FM=EN . Tam giác MNP là tam giác gì ? Vì sao ?
d) Chứng minh rằng : Tam giác ABC , tam giác DEF và tam giác MPN có chung trọng tâm
Cho ΔABC, AB<AC.Gọi M là trung điểm của BC .Đường thẳng qua M vuông góc với tia phân giác góc BAC cắt AB ở D và cắt AC ở E. Đường thẳng qua B song song với AC cắt DE ở F
a) Chứng minh ΔBDF và ΔADE là các tam giác cân
b) Chứng minh M là trung điểm của EF
c) Chứng minh AC-AB=2BD
cho tam giác ABC. tia phân giác góc ngoài tại đỉnh B , C cắt nhau tại O.từ A kẻ đường thẳng vuông góc với các đường phân giác trên, cắt đường thẳng BC lần lượt tại M,N. Chứng minh AB+AC+BC=MN
Cho tam giác ABC có 3 góc nhọn. Qua A vẽ 1 đường thẳng vuông góc với AB. Đường thẳng này cắt tia phân giác góc B của tam giác ABC tại M. Kẻ MH vuông góc với BC ( H thuộc BC)
a) Chứng minh tam giác ABM bằng tam giác HBM
b) Kẻ đường cao AK của tam giác ABC. Gọi N là giao điểm của BM và AK. Chứng minh AK // HM
c) Chứng minh HN // AM
LÀM GIÚP MÌNH CÂU C THÔI NHA!!!