tim n de n^3 - n^2 + n -1 la so nguyen to
Cho A = n-1/n+4
a,tim n de A la so nguyen to
b,tim n nguyen de A la mot so nguyen
tim n de n^3 - n^2 + n -1 la so nguyen to
Có : n^3-n^2+n-1
= (n^3-n^2)+(n-1)
= (n-1).n^2+(n-1)
= (n-1).(n^2+1)
Để n^3-n^2+n-1 là số nguyên tố
=> n-1=1 hoặc n^2+1=1
=> n=2 hoặc n=0
Thử lại chỉ có n=2 là đúng
Vậy n=2
Tk mk nha
a, tim n de n^2 + 2006 la mot so chinh phuong
b, Cho n la so nguyen to lon hon 3. Hoi n^2 + 2006 la so nguyen to hay hop so.
a, ko có số n thỏa mãn
b, n^2+2006 là hợp số với n là số nguyên tố lớn hơn 3
a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.
a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.
tim so tu nhien n de (n+3)(n+1) la so nguyen to
n=2 vì 2+1=3; 2+3=5 ( 3 và5 đèu là số nguyên tố )
Tim so tu nhien n de (n+3)(n+1) la so nguyen to
Để \(\left(n+3\right)\left(n+1\right)\in P\Rightarrow\orbr{\begin{cases}n+3=1\\n+1=1\end{cases}}\)
Mà \(n+1< n+3\Rightarrow n+1=1\Rightarrow n=0\)
Vậy ...
Tim n nho nhat de n^3-4n^2+4n-1 la so nguyen to
\(n^3-4n^2+4n-1\)
\(=\left(n^3-1\right)-\left(4n^2-4n\right)\)
\(=\left(n-1\right)\left(n^2+n+1\right)-4n\left(n-1\right)\)
\(=\left(n-1\right)\left(n^2-3n+1\right)\)
Ta có: \(n^3-4n^2+4n-1=\left(n-1\right)\left(n^2-3n+1\right)\)
nên sẽ phải có 1 số trong tích trên bằng 1 và 1 số bằng chính snt đó
\(\Rightarrow\orbr{\begin{cases}n-1=1\\n\left(n-3\right)=0\end{cases}}\)
Các giá trị trên ko thỏa để n là snt
=> ko có giá trị n cần tìm
tim n thuoc N de 2^n-1 va 2^n+1 la so nguyen to
Cho A=n+3/n+2 voi n€z
a)tim dieu kien cua so nguyen n de A la phan so
b)tinh gia tri cua phan so A khi n=1;n=-1
c)tim so nguyen n de phan so A co gia tri la so nguyen
tim n de :2^n-1 va 2^+1 deu la so nguyen to