Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYỄN NHẬT QUANG
Xem chi tiết
Thảo Nguyên Xanh
Xem chi tiết
Trần Hữu Ngọc Minh
22 tháng 11 2017 lúc 14:57

Ta có:\(n=4x^2y^2-7x+7y=\left(2xy-1\right)^2+4xy-7x+7y-1>\left(2xy-1\right)^2\)

\(n=\left(2xy+1\right)^2-4xy+7y-7x-1< \left(2xy+1\right)^2\)

\(\Rightarrow\left(2xy-1\right)^2< n< \left(2xy+1\right)^2,\)mà \(n\)là số chính phương nên ta có:

\(n=\left(2xy\right)^2\Leftrightarrow4x^2y^2-7x+7y=4x^2y^2\Leftrightarrow x=y\left(đpcm\right)\)

Nguyễn Phương Thảo
Xem chi tiết
nguyen duc thang
27 tháng 1 2018 lúc 14:00

p là số nguyên tố, p>3 => p không chia hết cho 3, lại có (10;3)=1 => 10p không chia hết cho 3 (1)

10p+1 là số nguyên tố, 10p+1>3 => 10p+1 không chia hết cho 3 (2)

Ta có: 10p(10p+1)(10p+2) là tích 3 số tự nhiên liên tiếp => 10p(10p+1)(10p+2) chia hết cho 3 (3)

Từ (1),(2),(3) => 10p+2 chia hết cho 3 <=> 2(5p+1) chia hết cho 3

Mà (2;3)=1 Nên 5p+1 chia hết cho 3 (*)

p là số nguyên tố, p>3 => p lẻ => 5p lẻ => 5p+1 chẵn => 5p+1 chia hết cho 2 (**)

Ta có: (2;3)=1 (***)

Từ (*),(**),(***) => 5p+1 chia hết cho 6.

Nguyễn Nhật Minh
Xem chi tiết
Tạ Duy Phương
18 tháng 12 2015 lúc 12:18

Biết thì nói cho mình nha

Phượng Hoàng Lửa
Xem chi tiết
Dương Helena
19 tháng 12 2015 lúc 20:50

Câu 2: Nếu a,b là số nguyên tố lớn hơn 3 => a,b lẻ

vì a ;b lẻ nên a;b chia 4 dư 1 hoặc 3(vì nếu dư 2 thì a ;b chẵn) đặt a = 4k +x ; b = 4m + y 
với x;y = {1;3} 
ta có: 
a^2 - b^2 = (a-b)(a+b) = (4k -4m + x-y)(4k +4m +x+y) = 
16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) 
nếu x = 1 ; y = 3 và ngược lại thì x+y chia hết cho 4 và x-y chia hết cho 2 
=> 16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8 
=> a^2 - b^2 chia hết cho 8 
nếu x = y thì 
x-y chia hết cho 8 và x+y chia hết cho 2 
=> 4(k-m)(x+y) chia hết cho 8 và 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8 
=> a^2 - b^2 chia hết cho 8 
vậy a^2 - b^2 chia hết cho 8 với mọi a,b lẻ (1) 
ta có: a;b chia 3 dư 1 hoặc 2 => a^2; b^2 chia 3 dư 1 
=> a^2 - b^2 chia hết cho 3 (2) 
từ (1) và (2) => a^2 -b^2 chia hết cho 24 
Tick nha TFBOYS

Phan Tùng Dương
Xem chi tiết
Yume To Hazakura
26 tháng 5 2018 lúc 8:03

a ) Đặt \(n^2+2006=a^2\left(a\in Z\right)\)

\(\Rightarrow2006=a^2-n^2=\left(a-n\right).\left(a+n\right)\)( 1 )

Mà ( a + n ) - ( a - n ) = 2n chia hết cho 2

=> a + n và a - n có cùng tính chẵn lẻ

TH1 : a + n và a - n cùng lẻ => ( a - n ) . ( a + n ) là số lẻ => trái với ( 1 )

TH2 : a + n và a -n cùng chẵn => ( a - n ) . ( a + n ) chia hết cho 4 => trái với 1 

Vậy ko có n thỏa man để \(n^2+2006\)là số chính phương

b ) Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 ( \(k\ne0\))

TH1 : n = 3k + 1 thì \(n^2+2006\)= \(\left(3k+1\right)^2\)+ 2006 \(=(9k^2+6k+2007)⋮3\)và lớn hơn 3

=> \(n^2+2006\)là hợp số

TH2 : n = 3k + 2 thì \(n^2+2006=\left(3k+2\right)^2=(9k^2+12k+2010)⋮3\)và lớn hơn 3

=> \(n^2+2006\)là hợp số

Vậy \(n^2+2006\)là hợp số

Phạm xuân phát
Xem chi tiết
Nguyen Thi Kim Loan
14 tháng 2 2016 lúc 10:25

câu hỏi tương tự nha bạn

Thieu Gia Ho Hoang
14 tháng 2 2016 lúc 10:26

bai toan nay kho @gmail.com

Phạm xuân phát
14 tháng 2 2016 lúc 10:28

thì sao bạn

 

Phan Minh Sang
Xem chi tiết
Nguyễn Trần Ngọc Lương
Xem chi tiết