chứng minh rằng 2n+5 và 3n+7 là hai số cùng nhau?
Chứng minh rằng : hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau
Chứng minh rằng:2n+5 và 3n+7 là hai số nguyên tố cùng nhau
1)Gọi 2 số tự nhiên liên tiếp là n và n+1
Đặt ƯCLN(n,n+1)=d
Ta có: n chia hết cho d
n+1 chia hết cho d
=>n+1-n chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(n,n+1) =1
=>n và n+1 là 2 số nguyên tố cùng nhau
2)Gọi ƯCLN(2n+5,3n+7)=d
Ta có: 2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=>6n+15 chia hết cho d
3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=>6n+14 chia hết cho d
=>6n+15-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(2n+5,3n+7)=1
=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
a)
Gọi 2 số tự nhiên liên tiếp là n; n+1
Gọi ƯCLN ( n;n+1) la d
=> n chia hết cho d; n+1 chia hết cho d
=> n+1-n chia hết cho d
=> 1 chia hết cho d
=> d =1
=> ƯCLN ( n;n+1) =1
=> hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau
b)
Gọi ƯCLN( 2n+5;3n+7) la d
=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d
=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d
=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d
=> 6n+15-(6n+14) chia hết cho d
=> 1 chia hết cho d
=> d= 1
=> ƯCLN( 2n+5;3n+7)=1
=>2n+5 và 3n+7 là hai số nguyên tố cùng nhau
Gọi (2n+5;3n+7) chia hết cho d
=> (2n+5) chia hết cho d
3(2n+5) chia hết cho d
(6n+15) (1) chia hết cho d
(3n+7) chia hết cho d
2(3n+7) chia hết cho d
(6n+14) (2) chia hết cho d
Lấy (1) - (2) = (6n+15) - (6n+14) = 1 chia hết cho d
Vậy (2n+5) và ( 3n+7) là hai nguyên tố cùng nhau
Chứng minh rằng : 2n + 5 và 3n +7 là hai số nguyeeng tố cùng nhau
Gọi d là ƯC
=> 1 chia hết cho d
=> d = 1
Vậy ..........
ta có (2n+5) x 3=6n+15 (1)
(3n+7) x 2=6n+14 (2)
(1)-(2)=ƯCLN(2n+5,3n+7)
2n + 5 và 3n +7 là hai số nguyên tố cùng nhau (đpcm)
Gọi d là ƯCLN(2n+5,3n+7)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}}\)
=> (6n+15) - (6n+14) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
=> ƯCLN(2n+5,3n+7) = 1
Vậy 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
chứng minh rằng hai số 2n + 5 và 3n + 7 nguyên tố cùng nhau
Gọi ƯC(2n+5,3n+7)=d
Ta có: 2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=>6n+15 chia hết cho d
3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=>6n+14 chia hết cho d
=>6n+15-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d=Ư(1)=1
=>(2n+5,3n+7)=1
=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau.
Gọi d là ước chung lớn nhất của 2n+5 và 3n+7
=> 3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=> 6n+14 chia hết cho d
2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=> 6n+15 chia hết cho d
=>(6n+15 - 6n+14) chia hết cho d
= 1 chia hết cho d
hay d=1
Vậy (2n+5;3n+7)=1
gọi UCLN(2n+5, 3n+7) là d ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1) 3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2) => (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau(đpcm)
Chứng minh rằng:
a) Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b) Hi số ller liên tiếp là hai số nguyên tố cùng nhau
c) 2n+1 và 3n + 1 (n thuộc N) là hai số nguyên tố cùng nhau
d) 2n+5 và 3n+7 nguyên tố cùng nhau
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
Chứng minh rằng với mọi n là số tự nhiên thì :
2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau .
Chứng minh rằng 2n+5 và 3n+7 là hai sô nguyên tố cùng nhau
Gọi ƯCLN(2n + 5, 3n + 7) là y. Ta có:
2n + 5 chia hết cho y
3n + 7 chia hết cho y
=> 3n + 7 - (2n + 5) chia hết cho y
=> 14 chia hết cho y
Mà 2n + 5 là số lẻ không chia hết cho 14
=> ƯCLN(2n + 5, 3n + 7) = 1
=> 2n + 5 và 3n + 7 lầ hai số nguyên tố cùng nhau
Chứng minh rằng 2n+5 và 3n+7 là hai số nguyên tố cùng nhau
các bạn ai giai nhanh đúng va chi tiet minh se like
Gọi ƯCLN ( 2n + 5, 3n + 7 ) là d
\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
\(\Rightarrow\)\(\left(6n+15\right)-\left(6n+14\right)⋮d\)\(\Leftrightarrow\)\(1⋮d\)\(\Rightarrow\)\(d=1\)Hoặc có thể nói 2n + 5 và 3n + 7 nguyên tố cùng nhau
Gọi ƯCLN (2n+5;3n+7) là d
=> (2n+5) chia hết cho d => 3(2n+5) chia hết cho d => (6n+15) chia hết cho d
=> (3n+7) chia hết cho d => 2(3n+7) chia hết cho d => (6n+14) chia hết cho d
=> (6n+15) - (6n+14) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
Mà d lớn nhất => d=1
=> 2n+5 và 3n+7 là hai số nguyên tố cùng nhau
CHÚC BẠN HỌC TỐT NHA!
Chứng minh rằng:
a) 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
b) 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
gọi a là ước chung lớn nhất của 2n+1 và 3n+2
do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1
hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.
b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5
do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1
hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
Chứng tỏ rằng 2n+5 và 3n+7 ( n là số tự nhiên ) là hai số nguyên tố cùng nhau.
Nói đúng rồi Mai Nguyễn Bảo Phương