1. Tìm x thuộc Z:
(x^3+5).(x^3+10).(x^3+15).(x^3+30)
Tìm x thuộc Z
a, (x-3)+(x-2)+(x-1)+......+10+11=11
b,( x^3 + 5)(x^3+10)(x^3+15)(x^3+30)<0
tìm x,y thuộc Z:
(x^3+5)(x^3+10)(x^3+15)(x^3+30)<0
Tìm x,y thuộc z
a) ( x +5). ( 3x-12) >0
b) ( x^3 + 5 ) . ( x^3+10) . ( x^3 + 15) .( x^3 + 30 )
c) ( x-7 ) . ( xy+1 ) -9
Tìm x Thuộc Z biết
a) (x-3)+(x-2)+(x-1)+.........+10+11=11
b) (x3+5).(x3+10).(x3+15).(x3+30)<0
Tìm x thuộc Z biết:
a) (x -3)+(x-2)+(x-1)+...+10+11=11
b)(x3+5)(x3+10)(x3+15)(x3+30) < 0
Tìm x thuộc Z biết:
a) (x -3)+(x-2)+(x-1)+...+10+11=11
b)(x3+5)(x3+10)(x3+15)(x3+30) < 0
Tìm x thuộc Z biết:
a) (x -3)+(x-2)+(x-1)+...+10+11=11
b)(x3+5)(x3+10)(x3+15)(x3+30) < 0
a) (x-3)+(x-2)+(x-1)+...+10=0
gọi số lượng số hạng của vế trái là n (n\(\ne\)0)
\(\Rightarrow\)\(\frac{\left(10+x-3\right)\cdot n}{2}=0\)
\(\Rightarrow\)\(\frac{\left(7+x\right)\cdot n}{2}=0\)
\(\Rightarrow\)7+x=0 (vì n\(\ne\)0)
\(\Rightarrow\)x=-7
Tìm x thuộc Z:
(x3+5)(x3+10)(x3+15)(x3+30)
Tìm x thuộc Z biết:(x3+5)(x3+10)(x3+15)(x3+30)<0
tìm x thuộc z biết (x3+5)(x3+10)(x3+15)(x3+30)<0
Tìm x thuộc Z biết: (x3+5)(x3+10)(x3+15)(x3+30)<0
Để tích (x^3 + 5)(x^3+10)(x^3+15)(x^3+30)<0 thi phải có một hoặc ba thừa số nhỏ hơn 0
Mà x^3+5 < x^3+10 < x^3+15 < x^3+30
x^3+5<0 hoặc x^3+15<0
và x^3+10>0 và x^3+30>0
-10<x^3<-5 tương tự tìm được x = -3
- căn 10<x<- căn 5
Mà x thuộc Z
Nên x = -2
Vậy x= -2 hoặc x= -3