Find the smallest póitive integer n such that the number \(2^n+2^8+2^{11}\)is a perfect square
find the smallest positive integer k for which \(\sqrt{6075\cdot k}\) is a whole number
Answer : the smallest positive integer k is ......
2. find the value of k such that the remainder is the greatest
k/13= 11Rx
K=
1. Determine all pairs of integer (x;y) such that \(2xy^2+x+y+1=x^2+2y^2+xy\)
2. Let a,b,c satisfies the conditions
\(\hept{\begin{cases}5\ge a\ge b\ge c\ge0\\a+b\le8\\a+b+c=10\end{cases}}\)
Prove that \(2a^2+b^2+c^2\le38\)
3. Let a nad b satis fy the conditions
\(\hept{\begin{cases}a^3-6a^2+15a=9\\b^3-3b^2+6b=-1\end{cases}}\)
Find the value of\(\left(a-b\right)^{2014}\) ?
4. Find the smallest positive integer n such that the number \(2^n+2^8+2^{11}\) is a perfect square.
The sum of all possible natural number n such that : n2+n+1589 is a perfect square is
\(^{n^{ }2}\)+n+1589
=( \(^{n^{ }2}\)+n+\(\dfrac{1}{4}\))+\(\dfrac{6355}{4}\)
=(n+\(\dfrac{1}{2}\))^2+\(\dfrac{6355}{4}\)
Đặt n+\(\dfrac{1}{2}\)= a => \(a^2\)+\(\dfrac{6355}{4}\)=\(b^2\)
Tự giải a sau đó suy ra n=a -\(\dfrac{1}{2}\)
The sum of all possible natural number n such that : n2+n+1589 is a perfect square is
Tổng của tất cả các số tự nhiên có thể n sao cho :n2+n+1589 là một hình vuông hoàn hảo ?
là đề bài cho
The number of ordered pairs (x; y) where x, y ∈ N* such that x2y2 - 2(x + y) is perfect square is .......
The number of ordered pairs (x; y) where x, y ∈ N* such that x2y2 - 2(x + y) is perfect square is ..
The number of ordered pairs (x; y) where x, y ∈ N* such that x 2 y 2 - 2(x + y) is perfect square
is ...........
Giải Toán Tiếng Anh đi chúng cậu!!!!
1) Find the number not equal to O such that triple its square is equal to twice of its cube.
(Write your answer as a decimal number in the simplest form)
2) If \(\frac{x}{2}-\frac{x}{6}\)is an integer. Find the following statement must be true???
toán hại não , quá hại não!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!...???