CMR vs n thuộc N , ta có ;
a) n.(n+2).(n+7) chia hết cho 3
Giúp e vs ạ😭😭😭
1. CMR: 1^2+3^2+5^2+...+(2n-1)^2= (n*(4n^2-1))/3 (vs mọi n thuộc Z+)
2. CMR: 4^n+15*n-1 chia hết cho 9 (vs mọi n thuộc Z+)
3. CMR: n^3+11*n chia hết cho 6 (vs mọi n thuộc Z+)
1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh
2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.
a, Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^3 chia 3 dư 1
b, CMR với mọi n,m thuộc N ta luôn có m.n(m^2-n^2) chia hết cho 3
Các cụ cho con bỏ câu này
đề sai bn nhé
Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1
Đơn giản thôi:
Xét n=3k=> n^2=9k^2 chia hết cho 3
Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1
Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1
Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.
b) Có mn(m^2-n^2)
=mn(m-n)(m+n)
Nếu m hoặc n chia hết cho 3 thì xong luôn
Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3
Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3
Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3
khó.......................................qáu
Giúp mik vs Nobita kun
Cho k ! = 1*2*3*4*...*k
Cho n > 3 và n thuộc Z
ta có An = 1!+2!+3!+....+n!
CMR : An ko thể biểu diễn dưới dạng a^b ( a;b thuộc z và b >1)
Ai giải đc mình tick cho
CMR: n thuộc N ta có 5n-1 chia hết cho 4
N=5.5.5.5.5.......5.5-1
N=A25-1
N=a24chia hết cho 4 (DPCM)
CMR: Với mọi n thuộc N* ta có n^2 +n+1 ko chia hết cho 9
n.2+n+1=n.3+1. Vì n.3 Chia hết cho 3, 1 ko chia hết cho 3 nên n.3+1 Ko chia hết cho 3
=>n.2+n+3 ko chia hết cho 3.Ma 1 só ko chia het cho 3 thi ko chia hết cho 9
Vậy với mọi n la số tự nhiên thì n.2+n+1 ko chia hết cho 9
CMR: VỚI MỌI n thuộc N ta có 2*7^n+14 chia hết cho 3
CMR: n thuộc N ta có n2+3n chia hết cho 2
n2+3n=n(n+3)
Nếu n lẻ => n+3 chẵn
Nếu n chắn => n chẵn
=> đpcm
CMR vs mọi số nguyên n, ta có
\(n^3-n:6\).
\(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\))
Vì (n-1)n(n+1) là tích của ba số tự nhiên liên tiếp nên tồn tại 1 bội của, 1 bội của 3
Mà ƯC(2,3)=1
Suy ra n^3-n chia hết cho 2*3=6
Ta có \(n^3-n=n.\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right)\)
Vì \(n-1;n;n+1\)là 3 số nguyên liên tiếp
Suy ra \(\left(n-1\right).n.\left(n+1\right)\)chia hết cho 3
Mặt khác\(n-1;n;n+1\)là 3 số nguyên liên tiếp suy ra có ít nhất một số chẵn
Do đó \(\left(n-1\right).n.\left(n+1\right)⋮2\)
Vì \(\text{Ư}CLN\left(2;3\right)=1\)suy ra \(\left(n-1\right).n.\left(n+1\right)⋮6\)
Khi đó \(n^3-n⋮6\)
Vậy....