CMR : = \(36^{38}+41^{33}\) chia hết cho 77
CMR A=3638+ 4133chia hết cho 77
b2 .
Cmr :
A = 3638 + 4133 chia hết cho 77
CM A chia hết cho 7 và 11.
* 36 mod 7 = 1 nên 3638 mod 7 = 1; 41 mod 7 = -1 nên 4133 mod 7 = (-1)33 = -1
suy ra A mod 7 = 0 hay A chia hết cho 7.
* 36 mod 11 = 3, 41 mod 11 =-3 nên A mod 11 = 338 - 333 =333 (35 - 1) =333. 242
Vì 242 chia hết cho 11 nên A mod 11 = 0.
Vậy A chia hết cho 7.11 =77
Cmr \(36^{38}+41^{33}\) chia hết cho 77
CMR A=3638+4133 chia hết cho 77
b2 :
CMR :
A = 3638 + 4133 chia hết cho 77
Ta có;A = 3638 + 4133 = (3638 - 1)(4133 + 1)
Vì 3638 - 1 = (36 - 1)(3637 + 3636 +...+ 1) = 35(3637 + 3636 +...+ 1) chia hết cho 7
4133 + 1 = (41 + 1)(4132 - 4131 +...+ 1) = 42(4132 - 4131 +...+ 1) chia hết cho 7
Do đó A chia hết cho 7 (1)
Lại có: A = 3638 + 4133 = (3638 - 338)(4133 + 333) + (338 - 333)
Vì 3638 - 338 = (36 - 3)(3637 + 3536 +...+ 337) = 33(3637 + 3536 +...+ 337) chia hết cho 11
4133 + 333 = (41 + 3)(4132 - 4032 +...+ 332) = 44(4132 - 4032 +...+ 332 chia hết cho 11
338 - 333 = 333(35 - 1) =333 . 242 chia hết cho 11
Do đó A chia hết cho 11 (2)
Mà (7,11) = 1 (3)
Từ (1),(2),(3) => A chia hết cho 77
cmr 36^38-41^33 chia het cho 77
giúp vs m.n ơi
CMR A=3638+4133 chia hết cho 77
36^38+41^33
= 36^33 . 36^5 + 41^33
= 36^33 . 36^5 + 36^33 - 36^33 + 41^33
= 36^33(36^5+ 1) - (36^33 - 41^33)
= 77.Q1 - 77.Q2
=> chia hết cho 77
bạn tên lan ơi hình như có gì đó không đúng trong cách giải
Chứng minh rằng: 36^38+41^33 chia hết cho 77
Vì nó chia hết
Đúng 100%
Đúng 100%
Đúng 100%
Chứng minh rằng : A = 36^38 + 41^33 chia hết cho 77
CM A chia hết cho 7 và 11. Nếu bạn đã biết qua về lý thuyết đồng dư thì có thể giải thế này:
* 36 mod 7 = 1 nên 36^38 mod 7 = 1; 41 mod 7 = -1 nên 41^33 mod 7 = (-1)^33 = -1
suy ra A mod 7 = 0 hay A chia hết cho 7.
* 36 mod 11 = 3, 41 mod 11 =-3 nên A mod 11 = 3^ 38 - 3^33 =3^33 (3^5 - 1) =3^33. 242
Vì 242 chia hết cho 11 nên A mod 11 = 0.
Vậy A chia hết cho 7.11 =77