chứng tỏ rằng tích của 3 stn liên tiếp chia hết cho 6
chứng tỏ rằng tổng của 3 số tự nhiên liên tiếp chia hết cho 3
Gọi 3 stn liên tiếp là: a;a+1;a+2
Ta có : a+a+1+a+2=3a+(1+2)=3a+3
Mà 3a chia hết cho 3 ; 3 chia hết cho 3
Nên 3a+3 chia hết cho 3
Vậy tổng 3 stn liên tiếp chia hết cho 3
Gọi 3 số tự nhiên liên tiếp đó lần lượt là a;a+1;a+2
ta có :a+(a+1)+(a+2)=3a +3=3.(a+1) chia hết cho3
Vậy 3 số tự nhiên liên tiếp chia hết cho 3
Giải :
Tổng 3 STN liên tiếp bằng :
A + ( A +1 ) + ( A + 2 )
= ( A + A + A ) + ( 1 + 2 )
= 3A + 3
Mà 3A chia hết cho 3; 3 chia hết cho 3
\(\Rightarrow\)A + ( A + 1 ) + ( A + 2 ) chia hết cho 3 với mọi A ( đpcm ).
Bài 7 : Chứng minh rằng :
a. Tích của 3 số tự nhiên liên tiếp chia hết cho 9 .
b. Tích của 5 số tự nhiên liên tiếp chia hết cho 120 .
a) Chứng minh rằng trong hai số tự nhiên liên tiếp có một số tự nhiên chhia hết cho 2
b) Chứng minh rằng trong ba số tư nhiên liên tiếp có một số chia hết cho 3
c) Chứng minh tích của hai số chẵn liên tiếp chia hết cho 4
c)
gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)
ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)
\(=2.2.k.k+4k\)
\(=4k^2+4k\)
mà \(4k^2+4k\) chia hết cho 4
=>\(2k.\left(2k+2\right)\) chia hết cho 4
a)Goi 2 so tu nhien lien tiep la a;a+1
Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2
Neu a la so le:a+1 la so le
Vay tich2 so tu nhien lien tiep chia het cho 2
a)
gọi 2 số tự nhiên liên tiếp là 2k;2k+1. ta có:
*nêu 2k lẻ=>2k+1 chẳn =>2k+1 chia hết cho 2
*nếu 2k+1 lẻ=> 2k chẳn =>2k chia hết cho 2
vậy DPCM
Chứng minh rằng tích của n số nguyên liên tiếp luôn chia hết cho n!
Gọi n số nguyên liên tiếp là k+1;k+2;k+3;...;k+nk+1;k+2;k+3;...;k+n
Ta cần chứng minh (k+1)(k+2)...(k+n)⋮n!(k+1)(k+2)...(k+n)⋮n!
Cách 1. Ta có (nk)∈Z,∀n,k∈Z(nk)∈Z,∀n,k∈Z
Mà (nk+n)=(n+k)!k!n!=(k+1)(k+2)...(k+n)n!∈Z(nk+n)=(n+k)!k!n!=(k+1)(k+2)...(k+n)n!∈Z nên ta có đpcm.
Cách 2. Ta có: vp(n!+k!)≥vp(n!)+vp(k!)=vp(n!.k!)vp(n!+k!)≥vp(n!)+vp(k!)=vp(n!.k!)
Do đó (n+k)!⋮n!k!(n+k)!⋮n!k!, suy ra đpcm.
Chứng minh công thức ở trên:
Do [a+b]≥[a]+[b][a+b]≥[a]+[b] nên vp(n!+k!)=+∞∑i=1[n!+k!pi]≥+∞∑i=1[n!pi]++∞∑i=1[k!pi]=vp(n!)+vp(k!)vp(n!+k!)=∑i=1+∞[n!+k!pi]≥∑i=1+∞[n!pi]+∑i=1+∞[k!pi]=vp(n!)+vp(k!)
P/s: 2 cách này là như nhau nhưng ở cách 2 không cần biết đến số tổ hợp chập k của n phần tử (nk)(nk) nhưng lại cần biết vp(n)vp(n).
Chứng minh rằng tích ba số tự nhiên liên tiếp chia hết cho 6
Gọi 3 số tự nhiên đó là: \(n-1;\)\(n;\)\(n+1\) (\(n\ge1;\)\(n\in N\))
Tích 3 số là: \(A=\left(n-1\right)n\left(n+1\right)\)
Nếu: \(n=3k\)thì: \(A⋮3\)Nếu: \(n=3k+1\)thì: \(n-1=3k+1-1=3k\)\(⋮\)\(3\)\(\Rightarrow\)\(A⋮3\)Nếu: \(n=3k+2\)thì: \(n+1=3k+2+1=3k+3\)\(⋮\)\(3\)\(\Rightarrow\)\(A⋮3\)Vậy tích 3 số tự nhoeen liên tiếp luôn chia hết cho 3
trong 3 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2 (1)
trong 3 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 3 (2)
(2; 3) = 1 (3)
(1)(2)(3) => tích của 3 số tự nhiên liên tiếp chia hết cho 6
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
MN CHỈ GIÚP EM BÀI NÀY VỚI Ạ!! EM CẢM ƠN❤
Chứng minh rằng:
a) 10^10 - 1 chia hết cho 9
b) 10^9 + 2 chia hết cho 3
c) Tổng hai số chẵn liên tiếp không chia hết cho 4
d) Tích của 2 số tự nhiên liên tiếp bao giờ cũng là 1 số chẵn
e) Tích hai số chẵn liên tiếp chia hết cho 8
BÀI NÀY DÀI MONG MN GIÚP EM Ạ!!
a) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}-1=10..0-1=9..99\)
Nên \(10^{10}-1\) ⋮ 9
b) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}+2=10..0+2=10..2\)
Mà: \(1+0+0+...+2=3\) ⋮ 3
Nên: \(10^{10}+2\) ⋮ 3
Chứng tỏ rằng:
a) Trong hai số tự nhiên liên tiếp, có một số chia hết cho 2.
b) Trong ba số tự nhiên liên tiếp, có một số chia hết cho 3.
a) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))
Nếu m chia hết cho 2 thì ta có điều cần chứng minh
Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2
b) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))
Ta có: n + ( n + 1 ) + ( n + 2 ) = 3n + 3 chia hết cho 3
=> ĐPCM
chứng tỏ rằng trong bốn số tự nhiên liên tiếp có một số chia hết cho 4
Chứng tỏ rằng trong 5 số tự nhiên liên tiếp có 1 số chia hết cho 5
Gọi 5 số tự nhiên liên tiếp đó là a, a+1, a+2, a+3, a+4.
Nếu \(a=5k\Rightarrow a⋮5\)
Nếu \(a=5k+1\Rightarrow a+4=5k+1+4=5k+5⋮5\)
\(\Rightarrow a+4⋮5\)
Nếu \(a=5k+2\Rightarrow a+3=5k+2+3=5k+5⋮5\)
\(\Rightarrow a+3⋮5\)
Nếu \(a=5k+3\Rightarrow a+2=5k+3+2=5k+5⋮5\)
\(\Rightarrow a+2⋮5\)
Nếu \(a=5k+4\Rightarrow a+1=5k+4+1=5k+5⋮5\)
\(\Rightarrow a+1⋮5\)
Vậy trong 5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5.