chứng minh rằng tổng của một số có 2 chữ số với 1 số gồm 2 chữ số ấy viết theo chiều ngược lại là 1 số chia hết cho 11
chứng minh rằng: tổng của 1 số có 2 chữ số với một số gồm 2 chữ số ấy viết theo thứ tự ngược lại là 1 số chia hết cho 11
Chứng minh rằng : tổng của một số tự nhiên có 2 chữ số với số gồm 2 chữ số ấy viết theo thứ tự ngược lại là 1 số chia hết cho 11
Chứng minh rằng:
a,Tổng của 1 số có 2 chữ số với 1 số gồm 2 chữ số ấy viết theo thứ tự ngược lại là 1 số chia hết cho 11.
b,Tổng ab + cd chia hết cho 11 thì abcd chia hết cho 11
a ) Gọi số đó là ab . Theo đề ta có :
ab + ba = 10 . a + b + 10 . b + a = 11 . a + 11 . b = 11 ( a + b ) chia hết cho 11
Vậy ( đpcm )
b ) Theo đề ta có :
ab + cd chia hết cho 11
ab + cd + ab . 99 chia hết cho 11
ab . 100 + cd chia hết cho 11
abcd chia hết cho 11 .
Vậy ( đpcm )
Chứng minh rằng:
a, Tổng của một số tự nhiên có hai chữ số với số gồm hai chữ số ấy viết theo thứ tự ngược lại ta có một số chia hết cho 11.
b, Hiệu của một số tự nhiên có hai chữ số với số gồm hai chữ số ấy viết theo thứ tự ngược lại chia hết cho 9.
Gọi số có 2 chữ số đó là\(\overline{ab}\)(\(a\in\)N*,\(b\in N\))
=>Số đó viết theo thứ tự ngược lại là \(\overline{ba}\)
a)Ta có \(\overline{ab}\)+ \(\overline{ba}\)
=10a+b+10b+a
=11a+11b
=11(a+b)\(⋮\)11
b)a)Ta có \(\overline{ab}\)- \(\overline{ba}\)
=(10a+b)-(10b+a)
=10a+b-10b-a
=9a-9b
=9(a-b)\(⋮\)9
Chứng tỏ rằng lấy một số có 2 chữ số rồi cộng với số gồm 2 chữ số ấy viết theo thứ tự ngược lại ta luôn được 1 số chia hết cho 11
Các số đó có dạng ab, ta có :
ab+ba=a*10+b+b*10+a=(a*10+a)+(b*10+b)=a*11+b*11
Vì a*11chia hết cho 11; b*11 chia hết cho 11
=> a*11+b*11 chia hết cho 11
Vậy lấy 1 số có 2 chữ số rồi cộng với số gồm 2 chữ số ấy viết theo thứ tự ngược lại ta luôn được 1 số chia hết cho 11
chứng minh rằng nếu viết thêm vào đằng sau một số tự nhiên có 2 chữ số số gồm chính 2 chữ số ấy viết theo thứ tự ngược lại thì đc 1 số chia hết cho 11
Chứng tỏ rằng lấy 1 số có 2 chữ số cộng với 1 số gồm 2 chữ số ấy viết theo thứ tự ngược lại ta luôn đc 1 số chia hết cho 11
Bạn tham khảo link này nha :
https://olm.vn/hoi-dap/detail/8666721638.html
~Study well~
#KSJ
#Mk sẽ gửi link cho bn!
Trả lời
Các số đó có dạng ab, ta có:
ab+ba=a.10+b+b.10+a=(a.10+a)+(b.10+b)
Vì a.11 chia hết cho 11,b.11 chia hết cho 11
=>a.11+b.11 chia hết cho 11
Vậy lấy 1 số có 2 chữ số cộng với một số gồm 2 chữ số ấy viết theo thứ tự ngược lại ta luôn được 1 số chia hết cho 11.
Học tốt nha!
Gọi số đó là ab, ta có:
ab + ba
=10a + b + 10b + a
=(10a + a) + (10b + b)
=a(10+1) + b(10+1)
=11a + 11b
=11(a+b)
Vì ab + ba = 11(a+b) mà 11(a+b)\(⋮\)11 nên ab + ba \(⋮\)11
Chứng minh: Tổng của 1 số tự nhiên có hai chữ số với số gồm hai chữ số ấy viết theo thứ tự ngược lại là một số chia hết cho 11.
chứng minh rằng nếu viết vào đằng sau 1 số tự nhiên có 2 chữ số gồm chính 2 chữ số ấy viết theo thứ tự ngược lại thì được 1 số chia hết cho 11
Gọi số có 2 chữ số đó là ab
=> Số sau khi viết thêm là abba
Ta có: abba = 1000a + 100b + 10b + a = 1001a + 110b
= 11.91.a + 11.10.b = 11.(91a + 10b) chia hết cho 11
Vậy abba chia hết cho 11 (Đpcm)
a.theo đề bài ta có :
abba=1001a+110b chia hết cho 11