tìm gtri lớn nhất hoặc nhỏ nhất của B biết B= 2x2+10x-1
Tìm giá trị lớn nhất (hoặc nhỏ nhất) của các biểu thức sau:
a. A = x2 – 6x + 11
b. B = 2x2 + 10x – 1
c. C = 5x – x2
A = x2 - 6x + 11
Nhập phương trình vào máy tính lặp 3 lần dấu =
GTNN của A = 3
B = 2x2 + 10x - 1
Nhập phương trình vào máy tính lặp 3 lần dấu =
GTNN của B = \(-\frac{5}{2}\)
C = 5x - x2
=> C = -x2 + 5x
Nhập phương trình vào máy tính lặp 3 lần dấu =
GTLN của C = \(\frac{5}{2}\)
Tìm giá trị lớn nhất (hoặc nhỏ nhất) của các biểu thức sau:
a. A = x2 – 6x + 11
b. B = 2x2 + 10x – 1
c. C = 5x – x2
Trả lời
MK trả lời câu hỏi trc của bạn rùi nha
https://olm.vn/hoi-dap/detail/225394580109.html
hok tốt
Tìm giá trị lớn nhất (hoặc nhỏ nhất) của các biểu thức sau: B = 2 x 2 + 10 - 1
2 x 2 + 10 - 1 = 2 x 2 + 5 x - 1 / 2 B = 2 x 2 + 2 . 5 / 2 x + 5 / 2 2 - 5 / 2 2 - 1 / 2 = 2 x + 5 / 2 2 - 25 / 4 - 2 / 4 = 2 x + 5 / 2 2 - 27 / 2 = 2 x + 5 / 2 2 - 27 / 2 V ì x + 5 / 2 2 ≥ 0 n ê n 2 x + 5 / 2 2 ≥ 0 ⇒ 2 x + 5 / 2 2 - 27 / 2 ≥ - 27 / 2
Suy ra: B ≥ - 27/2 .
B= -27/2 khi và chỉ khi x + 5/2 = 0 suy ra x = -5/2
Vậy B = -27/2 là giá trị nhỏ nhất tại x = - 5/2
tìm gtri lớn nhất hoặc nhỏ nhất của A biết A=x2-6x+11
\(A=x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+2\ge2\)
Vậy GTNN của A là 2
Tìm giá trị nhỏ nhất hoặc lớn nhất của đa thức B=2x2+10x-1
B=2x2+10x-1
=2(x2+5x-\(\frac{1}{2}\))
=2(x2+2x.\(\frac{5}{2}\)\(+\frac{25}{4}\)\(-\frac{27}{4}\))
=2[(x2+\(\frac{5}{2}\))2-\(\frac{27}{4}\)]
=2(x+\(\frac{5}{2}\))2-\(\frac{27}{2}\)\(\ge\frac{-27}{2}\)(vì (x+5/2)2\(\ge0\))
Dấu = xảy ra khi :
x+\(\frac{5}{2}\)=0
<=>x=\(\frac{-5}{2}\)
Vậy GTNN của B là \(\frac{-27}{2}\)khi x= \(\frac{-5}{2}\)
Tìm gtri lớn nhất (hoặc nhỏ nhất) của bthuc:
A=3x2+4x-2
B= 4x/x2-x-x+4 với x khác 0
\(\text{A=3x^2+4x-2}\)
\(=3\left(x+\frac{2}{3}\right)^2-\frac{10}{3}\ge-\frac{10}{3}\)
Dấu ''='' xảy ra khi \(x+\frac{2}{3}=0\Rightarrow x=-\frac{2}{3}\)
Tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức:
a) A = x2-4x+20
b) B = x2+3x+7
c) C = -x2-10x+70
d) D = -4x2+12x+1
\(A=x^2-4x+20=x^2-4x+4+16=\left(x-2\right)^2+16\)
Do \(\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+16\ge16\)
\(\Rightarrow Min\left(A\right)=16\)
\(B=x^2-3x+7=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}+7=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\)
Do \(\left(x-\dfrac{3}{2}\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
\(\Rightarrow Min\left(B\right)=\dfrac{19}{4}\)
\(C=-x^2-10x+70=-\left(x^2+10x+25\right)+25+70=-\left(x-5\right)^2+95\)
Do \(-\left(x-5\right)^2\le0\)
\(\Rightarrow-\left(x-5\right)^2+95\le95\)
\(\Rightarrow Max\left(C\right)=95\)
\(D=-4x^2+12x+1=-\left(4x^2-12x+9\right)+9+1=-\left(2x-3\right)^2+10\)
Do \(-\left(2x-3\right)^2\le0\)
\(\Rightarrow-\left(2x-3\right)^2+10\le10\)
\(\Rightarrow Max\left(D\right)=10\)
tìm giá trị nhỏ nhất hoặc lớn nhất cảu các biểu thức sau:
a) A=x^2-6x+11
b)B=2x^2+10x-1
c)C=5x-x^2
\(a,A=x^2-6x+11=\left(x-3\right)^2+2\)\(\Leftrightarrow Amin=2\)
Dấu = xảy ra \(\Leftrightarrow x=3\)
\(2x^2+10x-1=2\left(x^2+5x-\frac{1}{2}\right)=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}-\frac{27}{4}\right)=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)
\(\Rightarrow Bmin=\frac{-27}{2}.''=''\Leftrightarrow x=\frac{-5}{2}\)
\(5x-x^2=-\left(x^2-5x\right)=-\left(x^2-2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}\right)=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)\(\Leftrightarrow Cmax=\frac{25}{4}.''=''\Leftrightarrow x=\frac{5}{2}\)
(x+2)^2-1.tìm gtri lớn nhất, nhỏ nhất của x
Với x lớn nhất thì x càng lớn càng đạt được kết quả lớn bạn nhé!
=> x thuộc Z khác 0
Với x nhỏ nhất, ta có:
Giá trị nào mũ 2 cũng là số tự nhiên => để x có giá trị nhỏ nhất thì x+2 =0
=>x=-2