Chứng minh rằng: \(3^{2^{4n+1}}+2\) chia hết cho 11, với mọi \(n\in N\)
chứng minh rằng với mọi n thuộc N thì 32 4n+1+2 chia hết cho 11
Nếu n=0 thì 2^2^4n + 1 +7 =11 chia hết cho 11.
Nếu n > 0 thì 2^2^4n + 1 =2^2^4n × 2^2^4n. (1). Có: 2^4n=.......6=......5+1=5x +1.
Vì ....5 lẻ ;5 lẻ suy ra 5 lẻ nên ...
Câu trả lời hay nhất: 2^4n = (2^4)^n = ......6( có chữ số tận cùng là 6
=> (2^4n+1)+3= ......0( có chữ số tận cùng là 0)
=>(2^4n+1)+3 chia hết cho 5 với mọi n thuộc N?
mk nghĩ đề bài nó phải thế này chứ : Chứng minh: (2^4n+1)+3 chia hết cho 5 với mọi n thuộc N?-lớp 8
chứng minh rằng: (22^4n+1+7) chia hết cho 11 với mọi n thuộc N
Nếu n=0 thì 2^2^4n + 1 +7 =11 chia hết cho 11
Nếu n > 0 thì 2^2^4n + 1 =2^2^4n × 2^2^4n. (1)
Có:
2^4n=.......6=......5+1=5x +1
Vì ....5 lẻ ;5 lẻ suy ra 5 lẻ nên 2^2^4n =2^5x+1
2^5 đồng dư vs -1 ( mod 11) suy ra (2^5)^x đồng dư với -1( mod 11) ( vì x lẻ)
Suy ra (2^5)^x +1 chia hết cho 11
=) 2× [(2^5)^x +1] chia hết cho 11 (=) 2^5x+1 +2 chia hết cho 11
hay 2^2^4n +2 chia hết cho 11
Lại có 2^2^4n đồng dư với -2 ( mod 11)
Từ (1);(2) suy ra : 2^2^4n × 2^2^4n đồng dư vs 4 (mod 11)
Suy ra 2^2^4n+1 đồng dư vs 4 ( mod 11)
Vậy 2^2^4n+1+7 chia hết cho 11
1/ Chứng minh n5-5n3+4n chia hết cho 120 với mọi số nguyên n
2 / Chứng minh rằng n3+3n2+n+3 chia het chi 48 với mọi số lẽ n
3/ CMR n^4+4n3-4n2-16n chia hết cho 384 với mọi số nguyên n
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
a)chứng minh rằng : với mọi số tự nhiên n : (x+1)^4n+2 +(x-1)^4n+2 chia hết cho x^2 +1
b) chứng minh rằng với mọi số tự nhiên n : ( x^n -1) ( x^n+1 -1) chia hết cho (x+1)(x-1)
1. Tìm dư trong phép chia: 3^2013 : 13
2. Chứng minh rằng với mọi n thuộc N thì :
A= 3^2^(4n+1) + 2 chia hết 11
CHỨNG MINH RẰNG:
a. \(11^{n+2}+12^{2n+1}\)chia hết cho 133 với mọi n thuộc N.
b. \(3^{4n+2}+2.4^{3n+1}\)chia hết cho 17 với mọi n thuộc N.
c. \(3.5^{2n+1}+2^{3n+1}\)chia hết cho 17 với mọi n thuộc N.
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
chứng minh 3^2^(4n+1) +2 chia hết cho 11 với mọi n thuộc N*
chứng minh rằng với mọi n thuộc N ta có 3^2^4n+1 + 2 cia hết cho 11
Chứng minh rằng với mọi n thuộc N thì 34n+1+2 chia hết cho 5