Cho \(x,y,z\) (khác 0) và \(3x=2y\)
Khi đó \(\frac{x}{y.z}\) : \(\frac{y}{z.x}\) = ?
Tìm các số hữu tỉ x,y,z
x (x+y+z) = -12 ; y (y+x+z) = 18 ; z (z+y+x) = 30
\(\frac{x}{3}=\frac{y}{5};\frac{y}{6}=\frac{z}{7}\)và 3x + y - 2z = 42
x.y = z; y.z = 4x ; z.x = 9y
x.y = \(\frac{3}{5};y.z=\frac{4}{5};z.x=\frac{3}{4}\)
cho 3x=2y
tinh : \(\frac{x}{y.z}\):\(\frac{y}{z.x}\)
Theo đầu bài ta có: \(3x=2y\Rightarrow\frac{x}{y}=\frac{2}{3}\)
=>\(\frac{x}{yz}:\frac{y}{zx}=\frac{x}{yz}.\frac{zx}{y}=\frac{x^2}{y^2}=\frac{2^2}{3^2}=\frac{4}{9}\)
CHO X, Y, Z KHÁC 0 VÀ 3X=2Y. KHI ĐÓ \(\frac{X}{YZ}=\frac{Y}{XZ}=....\)
Cho các số x,y,z khác 0 và x^2=y.z ;y^2=z.x ;z^2=x.y
Chứng minh rằng x=y=z
Cho x,y,z là ba số khác 0 thỏa mãn \(\frac{x.y}{x+y}+\frac{y.z}{y+z}+\frac{z.x}{z+x}\) ( với giả thiết các tỉ số có nghĩa). Tính giá trị biểu thức:
\(M=\frac{2020.x^2.y+2020.y^2.z+2020.z^2.x}{x^3+y^3+z^3}+\frac{2021.x^4.y+2021.y^4.z}{x^5+y^5}\)
giúp mình với mình đang cần gấp Pleaseeee :(
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
Cho x+y+z=12. Tìm Min của A= \(\frac{x.y}{12-z}+\frac{y.z}{12-x}+\frac{z.x}{12-y}\)
tìm x,y,x biết
a)\(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)và 2x-3y+z=6
b)\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x.y+y.z+z.x=64
a,\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Leftrightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)=3
\(\frac{x.y}{x+y}=\frac{12}{7}\);\(\frac{y.z}{y+z}=-6\);\(\frac{z.x}{z+x}=-4\)tìm X;y;z
Cho x,y,z khác 0 và x2 = y.z ; y2 = z.x ; z2 = x.y .
Chứng minh rằng : x=y=z
Mọi người giúp em với ạ , em đang cần rất gấp ạ . Thanks nhiều ạ !
Theo đề bài ta có:
;
cân bằng phương trình bằng cách nhân x vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân y vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân z vào cả hai vế ta có:
vì
Vì Có cùng số mũ và bằng nhau
Nên các cơ số cũng bằng nhau
Ta có: \(x^2=y\cdot z\)
nên \(z=\dfrac{x^2}{y}\)(1)
Ta có: \(y^2=z\cdot x\)
nên \(z=\dfrac{y^2}{x}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)
\(\Leftrightarrow x^3=y^3\)
hay x=y(3)
Ta có: \(x^2=y\cdot z\)
nên \(y=\dfrac{x^2}{z}\)(4)
Ta có: \(z^2=x\cdot y\)
nên \(y=\dfrac{z^2}{x}\)(5)
Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)
\(\Leftrightarrow x^3=z^3\)
hay x=z(6)
Từ (3) và (6) suy ra x=y=z(đpcm)
\(x^2=yz\Rightarrow\dfrac{x}{y}=\dfrac{z}{x}\\ y^2=zx\Rightarrow\dfrac{y}{z}=\dfrac{x}{y}\\ z^2=xy\Rightarrow\dfrac{z}{x}=\dfrac{y}{z}\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{x+y+z}=1\\ \Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=1\\ \Rightarrow x=y=z\)