Cho P là số nguyên tố lớn hơn 3 ,Hỏi P chia cho 3 thì số dư là bao nhiêu .
a,Cho n là số nguyên tố lớn hơn 3 thì n\(^2\)+2012 là số nguyên tố hay hợp số?
b,Cho n là số tự nhiên chia cho 17 dư 13 ,chia cho 37 dư 23.
Hỏi n chia cho 629 có số dư là bao nhiêu?
n>3=>n không chia hết cho 3
=>n2 không chia hết cho 3
=>n2=3q+1(tính chất của số chính phương)
=>n2+2012=3q+1+2012=3q+2013=3(q+671) chia hết cho 3
=>n2+2012 là hợp số
b) n chia cho 17 dư 13 => n - 13 chia hết cho 17
n chia cho 37 dư 23 => n - 23 chia hết cho 23
=> 2n - 26 chia hết cho 17 => 2n - 26 + 17 = 2n - 9 chia hết cho 17
2n - 46 chia hết cho 37 => 2n - 46 + 37 = 2n - 9 chia hết cho 37
=> 2n - 9 chia hết cho 17 và 37. 17 và 37 nguyên tố cùng nhau nên
2n - 9 chia hết cho 17.37 = 629
=> 2n - 9 + 629 chia hết cho 629
Hay 2n + 620 chia hết cho 629
mà 2n + 620 = 2.(n + 310) nên 2.(n + 310) chia hết cho 629 . vì 2 và 629 nguyên tố cùng nhau nên n + 310 chia hết cho 629
=> n chia cho 629 dư 319 (629 - 310 = 319)
cô Loan viết nhầm 37 thành 23 trong n chia 37 dư 23=>n-23 chia hết cho 23 ở dòng thứ 2
Các số nguyên tố lớn hơn 3 thì khi chia cho 3 thì có dư là bao nhiêu
b/Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
HT
a) Cho n là số nguyên tố lớn hơn 3. Hỏi \(n^2\)\(+2006\) là số nguyên tố hay hợp số.
b) Một số tự nhiên chia cho 7 dư 5, chia cho 13 dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu?
Gọi b là số tự nhiên đó.
Vì b chia cho 7 dư 5,chia cho 13 dư 4
=>b+9 chia hết cho 7
b+9 chia hết cho 13
=>b+9 chia hết cho 7.13=91
=>b chi cho 91 dư 91-9=82
=>điều phải chứng minh
Bài 1: Tìm nguyên tố P sao cho:
a) P+2 ; P+4 đều là số nguyên tố
b) P+10 ; P+14 đều là số nguyên tố
Bài 2: Số học sinh của một trường là một số có ba chữ số lớn hơn 900, mỗi lần xếp hàng 3,4,5 thì vừa đủ. Hỏi trường đó có bao nhiêu người
Bài 3: Một số tự nhiên chia cho 3 dư 1 ; chia 4 dư 2 ; chia 5 dư 3 ; chia 6 dư 4 và chia hết cho 11. Tìm số nhỏ nhất có tính chất trên
Nhận xét:
3 - 1 = 2
4 - 2 = 2
5 - 3 = 2
6 - 4 = 2
Gọi số cần tìm là a
thì a + 2 chia hết cho cả 3,4,5,6
Ta có 3 = 3 x 1
4 = 2 x 2
3 = 5 x 1
6 = 3 x 2
3 x 2 x 2 x 5 = 60
a + 2 là bội của 60
a = (60 - 2 ) + k x 60
a= 58 + k x 60
a chia hết cho 11 mà 58: 11 = 5 (dư 3); 11 - 3 = 8
Vậy (k x 60) : 11 ( dư 8)
Dùng phép thử chọn để tìm k ta được k = 6
Vậy a = 58 + 6 x 60 = 418
Chúc bạn học giỏi nha!
câu 3 đấy nhé mà ko biết đúng ko ^^
P LÀ SỐ NGUYÊN TỐ LỚN HƠN 3
P;P+D;P+2D LÀ CÁC SỐ NGUYÊN TỐ VẬY D CHIA CHO 6 DƯ LÀ BAO NHIÊU?
a) Cho n là số nguyên tố không chia hết cho 3. Chứng minh rằng n 2 chia cho 3 dư 1.
b) Cho p là một số nguyên tố lớn hơn 3. Hỏi p 2 + 2003 là số nguyên tố hay hợp số
a) Cho n là số nguyên tố không chia hết cho 3 . Chứng minh rằng n 2 chia cho 3 dư 1.
b) Cho p là một số nguyên tố lớn hơn 3 . Hỏi p 2 + 2003 là số nguyên tố hay hợp số
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
b) p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2003 chẵn => p2 + 2003 là hợp số
a) cho p là số nguyên tố chia hết cho 3 . chứng minh rằng : p chia 9 dư 3
b) cho p là 1 nguyên tố lớn hơn 3 . hỏi p2 + 2003 là số nguyên tố hay hợp số
a) sao lai hinh nhu sai?
p nguyen to chia het cho 3 => p chi co the =3
3 nho hon 9=> 3 chia 9 =0 du 3
dpcm
Câu hỏi này câu a như bị sai đề,
Câu b
p là số nguyên tố lớn hơn 3 nên p không chia hết cho 3 suy ra \(p^2\) chia 3 dư 1.
Suy ra \(p^2+2003\) chia hết cho 3 ( do 2003 chia 3 dư 2)
Vậy \(p^2+2003\) là hợp số.
Câu 1 : Cho p là số nguyên tố lớn hơn 3 . CMR (p-1)(p+1) chia hết cho 24
Câu 2 CMR nếu p và p+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng luôn chia hết cho ...
Câu 3 : Cho p là số nguyên tố lớn hơn 3 . Hỏi p2 + 2009 là hợp số hay số nguyên tố .