Tìm số hữu tỉ x,sao cho x -\(\sqrt{x}\) = 0
Tìm các số hữu tỉ a,b sao cho x=$\sqrt{2}$+1/$\sqrt{2}$-1 là nghiệm của pt: x^3+ax^2+bx+1=0
a)Tìm 3 số hữu tỉ x sao cho: x.(x-1/3)<0
b)Tìm 2 số hữu tỉ x và y (y # 0) sao cho: x+y=x.y=x:y
a/ x.(x-1/3)<0
mà x > x-1/3
=> x>0 ; x-1/3 < 0
=> x>0 ; x<1/3
=> 0<x<1/3, x thuộc Q
chọn ba số x là : 1/4 ; 1/5; 1/6
b/
x+y = x.y= x:y
x+y = x.y
=> x= x.y-y = y.[x-1]
=> x:y= x-1 [1]
=> x+y = x:y = x-1
=> y= -1 thay vào [1]
=> x: [-1] = x-1
=> -x = x-1
=> 2x = 1
=> x= 1/2
Vậy x= 1/2 ; y= -1
a)x(x-1/3)<0
Do x>x-1/3
=>x>0 x-1/3<0
<=>0<x<1/3
=>0<x<4/12
=>x={1/12;2/12;3/12;...}
Bạn bảo tìm 3 số nên mk tìm nấy chứ có vô số x
b)xy=x:y
=>y.y=x:x=1
=>y=1 hoặc y=-1
*)y=1
=>x+1=x
<=>x-x=1
<=>0=1(L)
*)y=-1
=>x-1=-x
<=>x+x=1
<=>2x=1
<=>x=1/2
Vậy y=-1 x=1/2
a)Tìm 3 số hữu tỉ x sao cho: x.(x-1/3)<0
b)Tìm 2 số hữu tỉ x và y (y # 0) sao cho: x+y=x.y=x:y
a/ x.(x-1/3)<0
mà x > x-1/3
=> x>0 ; x-1/3 < 0
=> x>0 ; x<1/3
=> 0<x<1/3, x thuộc Q
chọn ba số x là : 1/4 ; 1/5; 1/6
b/
x+y = x.y= x:y
x+y = x.y
=> x= x.y-y = y.[x-1]
=> x:y= x-1 [1]
=> x+y = x:y = x-1
=> y= -1 thay vào [1]
=> x: [-1] = x-1
=> -x = x-1
=> 2x = 1
=> x= 1/2
Vậy x= 1/2 ; y= -1
1) Tìm x,y là số hữu tỉ sao cho (2x-3).\(\sqrt{2}\)=3-x+2y
2) Tìm số hữu tỉ x,y sao cho: x-\(\frac{1}{x}\) là số nguyên
Mai nộp!!!
1, Rút gọn A = \(\frac{\sqrt{2+\sqrt{4-x^2}}\left[\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right]}{4+\sqrt{4-x^2}}\)
2, Cho trước số hữu tỉ m sao cho \(\sqrt[3]{m}\) là số vô tỉ. Tìm a, b, c hữu tỉ để \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0\)
Cho a và b là 2 số hữu tỉ khác 0. CMR tồn tại 2 số hữu tỉ x và y sao cho \(\left(a+b\sqrt{5}\right)\left(x+y\sqrt{5}\right)=b+a\sqrt{5}\)
Cho x=\(2+\sqrt{5}\).Tìm tất cả các số hữu tỉ a,b sao cho x là nghiệm của phương trình :\(x^3+ax^2+bx+c=0\)
Tìm số nguyên x sao cho \(\sqrt{x^2+x+3}\) là số hữu tỉ
đặt \(x^2+x+23=k^2\left(k\in N\right)\Leftrightarrow4x^2+4x+92=4k^2\Leftrightarrow4k^2-\left(2x+1\right)^2=91\)
\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=91\)
vì 2k+2x+1>2k-2x-1>0 nên xảy ra 2 trường hợp sau
th1 2k+2x+1=91 và 2k-2x-1=1 => x=22
th2 2k+2x+1=1 và 2k-2x-1=7 => x=1
vậy x=22; x=1 thì \(\sqrt{x^2+x+3}\)là số hữu tỉ
Tìm số hữu tỉ x khác 0 sao cho [x]=4{x}
[x] kí hiệu phần nguyên của x, là số nguyên lớn nhất không vượt quá x
{x} là phần lẻ của x ; và bằng x - [x]
=> Tính chất 0 < x - [x] < 1
Ta có: [x] = 4{x}
=> [x] = 4. (x - [x])
=> 5.[x] = 4x
=> [x] = 4x/5
=> 4x/5 \(\in\) Z và 0 < x - 4x/5 < 1
=> 4x/5 \(\in\) Z và 0 < x/5 < 1
=> 4x/5 \(\in\) Z và 0 < x < 5
=> x = 0
Vậy x = 0