Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Quân
Xem chi tiết
Thiên An
2 tháng 7 2017 lúc 15:39

Đặt   \(A=x^2y^3=y^3\left(1-y\right)^2=\frac{4}{9}y^3.\frac{9}{4}\left(1-y\right)^2=\frac{4}{9}y^3.\left(\frac{3}{2}-\frac{3}{2}y\right)^2\)

\(=\frac{4}{9}.y.y.y.\left(\frac{3}{2}-\frac{3}{2}y\right)\left(\frac{3}{2}-\frac{3}{2}y\right)\le\frac{4}{9}.\frac{\left(y+y+y+\frac{3}{2}-\frac{3}{2}y+\frac{3}{2}-\frac{3}{2}y\right)^5}{5^5}\)

\(=\frac{4}{9}.\frac{3^5}{5^5}=\frac{108}{3125}\)

Vậy  \(A\le\frac{108}{3125}\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}y=\frac{3}{2}-\frac{3}{2}y\\x+y=1\end{cases}}\)  \(\Leftrightarrow\)  \(\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{3}{5}\end{cases}}\)

Thiên An
2 tháng 7 2017 lúc 11:17

bạn biết giải thì bày mk với nhé

alibaba nguyễn
2 tháng 7 2017 lúc 11:53

Èo. Chưa giải ra luôn hả bé

nguyen van duc
Xem chi tiết
Do Dang Minh
Xem chi tiết
Hung Trinh Ngoc
7 tháng 10 2017 lúc 21:47

\(2xy\le x^2+y^2\le2\\ \)

\(\Rightarrow xy\le1\)

A=\(\frac{1+x+1+y}{\left(x+1\right)\left(y+1\right)}=\frac{2+x+y}{1+xy+x+y}\)

\(xy\le1\Rightarrow xy+1+x+y\le2+x+y\)

\(\Rightarrow A\ge\frac{2+x+y}{2+x+y}=1\)

Vậy A Nhỏ nhất =1 khi x=y=1

Nguyễn Hoài Đức CTVVIP
Xem chi tiết
Natsumi
Xem chi tiết
Mr Lazy
6 tháng 8 2015 lúc 10:38

Áp dụng bất đẳng thức Bu-nhia.cop.xki

\(\left(1.x+1.y\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2\)

\(\Rightarrow\left|x+y\right|\le2\Rightarrow-2\le x+y\le2\)

Cách làm khác:

Ta có: \(\left(x-y\right)^2\ge0\Rightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)=2\)

\(\Rightarrow\left|x+y\right|\le\sqrt{2}\)

Mr Lazy
6 tháng 8 2015 lúc 10:39

\(x+y=-\sqrt{2}\text{ khi }x=y=-\frac{1}{\sqrt{2}}\)

=> GTNN của x +  y là \(-\sqrt{2}\)

\(x+y=\sqrt{2}\text{ khi }x=y=\frac{1}{\sqrt{2}}\)

\(\Rightarrow GTLN\text{ của }x+y\text{ là }\sqrt{2}\)

Phạm Minh Quang
Xem chi tiết
Yen Nhi
23 tháng 11 2021 lúc 12:34

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Anh Tú
Xem chi tiết
Phạm Khánh Huyền
Xem chi tiết
Trần Hoạch
Xem chi tiết
Vũ Tiến Manh
22 tháng 10 2019 lúc 22:41

Điều kiện <=> y2 =1 -(x-2)2 \(\ge0< =>\left(x-2\right)^2\le1< =>-1\le x-2\le1< =>1\le x\le3.\)

 m = x2+y2 = x2 +1 -(x-2)2 = 4x -3

=> 4.1-3 \(\le m\le\)4.3-3 <=> \(1\le m\le9\)

m Min =1 khi x =1; m Max= 9 khi x =3

Khách vãng lai đã xóa
Trần Hoạch
14 tháng 1 2020 lúc 21:14

thanks

Khách vãng lai đã xóa
Khánh Nguyễn
21 tháng 6 2020 lúc 9:15

các bạn cho mình đi

Khách vãng lai đã xóa