cho S = 3 + 3^2 + 3^3 + ... + 3^2016 . Tìm số dư của S khi chia cho 12
Cho S= 2+2.2^2+3.2^3+...+2019.2^2019
a, Chứng tỏ S+2016 chia hết cho 2^2020+1
b, Tìm số dư khi chia S cho 8
Cho S =3+3^2+3^3+...+3^2000
a)Chứng minh rằng S chia hết cho 12
b)Tìm số dư của S khi chia cho 13
Bạn nào trả lời giúp mình với, nhớ giải đầy đủ nhé.
Cho M=2015^2016^2017.Viết M thành tổng của 2016 stn n1;n2;...;n2016.Đặt S=n1^3+n2^3+...+n2016^3.Tìm số dư của phép chia S cho 3
Giúp mk vs
Cho A=2+2×2^2+3×2^3+4×2^4+....+2016×2^2016
a, Chứng tỏ S+2013chia hết cho 2^2017+1
b, Tìm số dư khi chia S cho 8
Nhanh nha mình đang cần gấp mình tick cho
S đâu ra vậy,ko hiểu đề lắm
tự làm đi dễ thế này rồi đó....
Cho S=3+32+33+...+3100
a) Chứng minh rằng S chia hết cho 12
b)Tìm số dư trong phép chia S cho 13
c)Tìm chữ số tận cùng của S
cho S = 3+3^2+3^3+...+3^1998+3^1999.Tìm số dư khi chia S cho 26
Cho N=2015^2016.Viết N thành tổng của k số tự nhiên:N=n1+n2+n3+...+nk
Xét S=n13+n23+...+nk3 . Tìm số dư khi S chia cho 6
+) Nhận xét: Với n thuộc N ta có : n3 - n = n(n2 - 1) = n.(n - 1).(n + 1)
n - 1; n ; n + 1 là 3 số tự nhiên liên tiếp nên tích n(n-1).(n+1) chia hết cho 6 => n3 - n chia hết cho 6
Xét S - N = (n13+n23+...+nk3 ) - (n1+n2+n3+...+nk) = (n13 - n1) + (n23 - n2) + ...+ (nk3 - nk)
từ nhận xét trên => n13 - n1 chia hết cho 6; n23 - n2 chia hết cho 6 ;...; nk3 - nk chia hết cho 6
=> S - N chia hết cho 6
=> S và N có cùng số dư khi chia cho 6
Xét N = 20152016 chia cho 6
Có: 2015 đồng dư với 5 (mod 6)
=> 20152 đồng dư với 52 (mod 6); 52 đồng dư với 1 (mod 6)
=> 20152 đòng dư với 1 (mod 6)
=> 20152016 = (20152)1008 đồng dư với 11008 = 1(mod 6)
=> N chia cho 6 dư 1 => S chia cho 6 dư 1
Cho S=1+32+33+...+32011
a/Chứng tỏ S chia hết 4
b/Tìm số dư của S khi chia cho 9;13
c/Tìm chữ số tận cùng của S
Cho S=3^99-3^98+3^97-...+3^3-3^2+3-1. Tính S và tìm số dư khi chia 3^100 cho 4
S=1-3+3\(^2\)-....+3\(^{98}\)-3\(^{99}\)(1)
\(\Rightarrow\)3S=3-3\(^2\)+3\(^3\)+...+3\(^{99}\)-3\(^{100}\)(2)
Từ(1)và(2)\(\Rightarrow\)4S=1-3\(^{100}\)
Do S chia hết cho -20\(\Rightarrow\)4S chia hết cho -20
\(\Rightarrow\)4S chia hết cho 4\(\Rightarrow\)1-3\(^{100}\)chia hết cho 4
\(\Rightarrow\)3\(^{100}\)chia hết 4 dư 1