CM : \(\sqrt{15}\) là số vô tỉ
\(A=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Số trên là số hữu tỉ hay vô tỉ
\(A=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4+\sqrt{5}}.\)\(\sqrt{4+\sqrt{5}}.\sqrt{4-\sqrt{5}}\)
\(=\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4+\sqrt{5}}.\)\(\sqrt{\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right)}\)
\(=\left(\sqrt{10}-\sqrt{6}\right)\)\(\sqrt{4+\sqrt{5}}.\sqrt{16-15}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=5-3=2\)
\(\Rightarrow A\)là số hữu tỉ
CMR:
a,\(\sqrt{15}\)là số vô tỉ.
b, \(\sqrt{2}\)là số vô tỉ.
c, \(5-\sqrt{2}\)là số vô tỉ.
Chứng minh cái này thì đơn giản thôi!
Mình xin trình bày cách chứng minh mà mình tâm đắc nhất:
Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau)
=>(m/n)^2=2
=>m^2=2n^2
=>m^2 chia hết cho 2
=>m chia hết cho 2
Đặt m=2k (k thuộc Z)
=>(2k)^2=2n^2
=>2k^2=n^2
=> n^2 chia hết cho 2
=> n chia hết cho 2.
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.
mk nghĩ thế này
a,b) Ta thấy: không có số nào mũ 2 lên được 15 và 2
=>\(\sqrt{15},\sqrt{2}\) là số vô tỉ
c) ta có: \(\sqrt{2}\) là số vô tỉ
mà Số tự nhiên - số vô tỉ luôn luôn là số vô tỉ
=>đpcm
nha bạn
a, cần CM \(\sqrt{15}\)là số vô tỉ
giả sử \(\sqrt{15}\)là số hữu tỉ
Đặt \(\sqrt{15}=\frac{a}{b}\left(a,b\in N\right)\)với b\(\ne0\)và phân số\(\frac{a}{b}\) tối giản
Ta có 15=\(\left(\frac{a}{b}^2\right)=\frac{a^2}{b^2}\)
=> a2=15b2=3.5b2
=>a2\(⋮3\)
Mà 3 nguyên tố nên a\(⋮3\)
=>a2\(⋮3^2\)=> 15b2\(⋮3^2\) => \(5b^2⋮3\)
Vì 5 và 3 nguyên tố cùng nhau nên b2\(⋮3\Rightarrow b⋮3\)(3 là số nguyên tố)
Ta có a,b cùng chia hết cho 3 nên \(\frac{a}{b}\)ko tối giản trái với đk của giả sử
Vậy \(\sqrt{15}\)là số vô tỉ
phần b,c giống The Hell? What
CM \(\sqrt{2}+\sqrt{3}+\sqrt{5}\) là số vô tỉ
Bài giải
Ta có :
\(\hept{\begin{cases}\sqrt{2}\\\sqrt{3}\\\sqrt{5}\end{cases}}\text{ là số vô tỉ}\)
\(\Rightarrow\text{ }\sqrt{2}+\sqrt{3}+\sqrt{5}\) là số vô tỉ
((( Không biết có phải vậy không ))))
CM \(\sqrt{7}\) là số vô tỉ
bài này đơn giản thôi
ta dùng phương pháp phản chứng để giải
giả sử căn7 không phải là số vô tỉ => căn 7 là số hữu tỉ
=> căn7 =a/b (với a, b là hai số nguyên tố cùng nhau) (vì căn 7 là số hữu tỉ nên có thể viết dưới dạng a/b)
=> a^2/b^2=7
=> a^2 =7b^2
vì a, b là hai so nguyen to cung nhau nên để a^2=7b^2 thì a^2 phải chia het cho 7
ma 7 la so nguyen tố => a chia het cho 7 => a có dạng a=7k
ta lại có: a^2=7b^2 => 49k^2 =7b^2 => b^2=7k^2 tương tự ta => b chia hết cho 7
ta có a và b đều chia het cho 7 trái với giả thiết a, b la hai so nguyen to cung nhau
=> ta có đpcm
Giả sử \(\sqrt{7}\)là số hữu tỉ , như vậy \(\sqrt{7}\)có thể viết dưới dạng phân số tối giản \(\frac{m}{n}\)tức là \(\sqrt{7}=\frac{m}{n}\)
Suy ra : \(7=\frac{m^2}{n^2}\)hay 7n2 = m2 \((1)\)
Đẳng thức 1 chứng tỏ \(m^2⋮7\)mà số 7 là số nguyên tố nên \(m⋮7\)
Đặt m = 7k \((k\inℤ)\),ta có : \(m^2=49k^2(2)\)
Từ 1 và 2 suy ra : \(7n^2=49k^2\Rightarrow n^2=7k^2(3)\)
Từ 3 ta lại có : \(n^2⋮7\)vì 7 là số nguyên tố nên \(n⋮7\)
Như vậy m và n cũng chia hết cho 7 nên phân số \(\frac{m}{n}\)không tối giản,trái với giả thiết . Vậy \(\sqrt{7}\)không phải là số hữu tỉ,do đó \(\sqrt{7}\)là số vô tỉ
CMR: \(\sqrt{15}\) là số vô tỉ
Giả sử \(\sqrt{15}\)là số hữ tỉ
\(\Rightarrow\)\(\sqrt{15}\)= \(\frac{m}{n}\){ (m; n) = 1; m, n\(\in\)Z )
\(\Rightarrow\)15 = \(\frac{m^2}{n^2}\)
\(\Rightarrow\)15.\(^{n^2}\)=\(^{m^2}\) ( * )
\(\Rightarrow\)\(^{m^2}\)\(⋮\)15 \(\Rightarrow\)m\(⋮\)15 ( 1 )
Ta đặt m = 15k ( k \(\in\)N )
Thay m = 15k vào ( * ) ta được
15. \(^{n^2}\)=\(^{\left(15k\right)^2}\)
15. \(^{n^2}\)= 225.\(^{k^2}\)
\(^{n^2}\)= 15. \(^{k^2}\)
\(\Rightarrow\)n\(⋮\)15 ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow\)( m; n )\(\ne\)1 ( Trái với giả sử )
\(\Rightarrow\)\(\sqrt{15}\)là số vô tỉ
Vậy \(\sqrt{15}\)là số vô tỉ ( đpcm ).
CM \(\sqrt{2}\)+ \(\sqrt{3}\)+\(\sqrt{5}\)là số vô tỉ
chứng minh:
a,\(\sqrt{2}\)là số vô tỉ
b,\(\sqrt{5}\)là số vô tỉ
c,\(\sqrt{2}\)-7 là số vô tỉ
d,\(\sqrt{5}\)+3 là số vô tỉ
Cm \(\sqrt{2}\)-\(\sqrt{3}\)+2 là số vô tỉ
căn 2 là svt , căn 3 là svt
=>căn2 - căn 3 là số vô tỉ
=> căn 2 - căn 3 + 2 là số vô tỉ
có gì ko hiểu thì hỏi riêng mình nha
Chứng minh rằng:
a) \(\sqrt{2}+\sqrt{3}\) là số vô tỉ
b) \(\sqrt{2}+\sqrt{3}+\sqrt{5}\) là số vô tỉ
c) A = \(\sqrt{1+\sqrt{2}}\)là số vô tỉ
d) B = \(m+\frac{\sqrt{3}}{n}\)là số vô tỉ ( m;n thuộc Q )
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ
\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ
d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ
\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ
phản chứng : giả sử tất cả thuộc Q a đặt a= căn 2+ căn 3(a thuộc Q) . bình phương 2 vế ta có a^2=5+2 căn 6=> căn 6 = a^2-5/2 thuộc Q => vô lí
b đặt căn 2 + căn 3 + căn 5 = a. chuyển căn 5 sang vế a bình phương lên ta có 2 căn 6=a^2-2 căn 5 a
bình phương 1 lần nữa =>căn 5= a^4+20a^2-24/4a^3 thuộc Q => vô lí
c bình phương lên => căn 2=A-1 thuộc Q => vô lí
d tương tự căn 3=Bn-mn thuộc Q => vô lí
chúc bạn học tốt
CMR \(\sqrt{15}\) là số vô tỉ
Giả sử \(\sqrt{15}\)là số hữu tỉ
=> \(\sqrt{15}=\frac{m}{n}\)( phân số tối giản )
=> m = \(\sqrt{15}.n\)
=> m2 = 15n2
=> m2 chia hết cho 15
=> m chia hết cho 15
Đặt m = 15k
=> m2 = 225k2
=> 225k2 = 15n2
=> n2 = 15k2
=> n2 chia hết cho 15
=> n chia hết cho 15
Ta thấy m và n đều chia hết cho 15 => m và m chưa tối giản
=> trái với giả thiết
=> \(\sqrt{15}\) là số vô tỉ