Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thị Quỳnh Anh
Xem chi tiết
Phạm Thị Thùy Linh
10 tháng 7 2019 lúc 22:16

\(A=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4+\sqrt{5}}.\)\(\sqrt{4+\sqrt{5}}.\sqrt{4-\sqrt{5}}\)

\(=\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4+\sqrt{5}}.\)\(\sqrt{\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right)}\)

\(=\left(\sqrt{10}-\sqrt{6}\right)\)\(\sqrt{4+\sqrt{5}}.\sqrt{16-15}\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=5-3=2\)

\(\Rightarrow A\)là số hữu tỉ 

Juki Mai
Xem chi tiết
The Hell ? What
27 tháng 10 2016 lúc 22:35

Chứng minh cái này thì đơn giản thôi! 
Mình xin trình bày cách chứng minh mà mình tâm đắc nhất: 
Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau) 
=>(m/n)^2=2 
=>m^2=2n^2 
=>m^2 chia hết cho 2 
=>m chia hết cho 2 
Đặt m=2k (k thuộc Z) 
=>(2k)^2=2n^2 
=>2k^2=n^2 
=> n^2 chia hết cho 2 
=> n chia hết cho 2. 
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau 
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.

Đỗ Lê Tú Linh
2 tháng 7 2015 lúc 10:38

mk nghĩ thế này

a,b) Ta thấy: không có số nào mũ 2 lên được 15 và 2

=>\(\sqrt{15},\sqrt{2}\) là số vô tỉ

c) ta có: \(\sqrt{2}\) là số vô tỉ

mà Số tự nhiên - số vô tỉ luôn luôn là số vô tỉ

=>đpcm

nha bạn

Nguyễn Tiến Đạt
10 tháng 3 2018 lúc 20:44

a, cần CM \(\sqrt{15}\)là số vô tỉ

giả sử \(\sqrt{15}\)là số hữu tỉ 

Đặt \(\sqrt{15}=\frac{a}{b}\left(a,b\in N\right)\)với b\(\ne0\)và phân số\(\frac{a}{b}\) tối giản

Ta có 15=\(\left(\frac{a}{b}^2\right)=\frac{a^2}{b^2}\)

=> a2=15b2=3.5b2

=>a2\(⋮3\)

Mà 3 nguyên tố nên a\(⋮3\)

=>a2\(⋮3^2\)=>  15b2\(⋮3^2\) => \(5b^2⋮3\)

Vì 5 và 3 nguyên tố cùng nhau nên b2\(⋮3\Rightarrow b⋮3\)(3 là số nguyên tố)

Ta có a,b cùng chia hết cho 3 nên \(\frac{a}{b}\)ko tối giản trái với đk của giả sử 

Vậy \(\sqrt{15}\)là số vô tỉ

phần b,c giống The Hell? What

Ngô Chi Lan
Xem chi tiết
Me
16 tháng 9 2020 lúc 20:53

                                                                  Bài giải

Ta có : 

\(\hept{\begin{cases}\sqrt{2}\\\sqrt{3}\\\sqrt{5}\end{cases}}\text{ là số vô tỉ}\)

\(\Rightarrow\text{ }\sqrt{2}+\sqrt{3}+\sqrt{5}\) là số vô tỉ

((( Không biết có phải vậy không ))))

Khách vãng lai đã xóa
Trương Thanh Nhân
Xem chi tiết
headsot96
23 tháng 7 2019 lúc 20:18

bài này đơn giản thôi 
ta dùng phương pháp phản chứng để giải 
giả sử căn7 không phải là số vô tỉ => căn 7 là số hữu tỉ 
=> căn7 =a/b (với a, b là hai số nguyên tố cùng nhau) (vì căn 7 là số hữu tỉ nên có thể viết dưới dạng a/b) 
=> a^2/b^2=7 
=> a^2 =7b^2 
vì a, b là hai so nguyen to cung nhau nên để a^2=7b^2 thì a^2 phải chia het cho 7 
ma 7 la so nguyen tố => a chia het cho 7 => a có dạng a=7k 
ta lại có: a^2=7b^2 => 49k^2 =7b^2 => b^2=7k^2 tương tự ta => b chia hết cho 7 
ta có a và b đều chia het cho 7 trái với giả thiết a, b la hai so nguyen to cung nhau 
=> ta có đpcm

Huỳnh Quang Sang
27 tháng 7 2019 lúc 19:45

Giả sử \(\sqrt{7}\)là số hữu tỉ , như vậy \(\sqrt{7}\)có thể viết dưới dạng phân số tối giản \(\frac{m}{n}\)tức là \(\sqrt{7}=\frac{m}{n}\)

Suy ra : \(7=\frac{m^2}{n^2}\)hay 7n2 = m2 \((1)\)

Đẳng thức 1 chứng tỏ \(m^2⋮7\)mà số 7 là số nguyên tố nên \(m⋮7\)

Đặt m = 7k \((k\inℤ)\),ta có : \(m^2=49k^2(2)\)

Từ 1 và 2 suy ra : \(7n^2=49k^2\Rightarrow n^2=7k^2(3)\)

Từ 3 ta lại có : \(n^2⋮7\)vì 7 là số nguyên tố nên \(n⋮7\)

Như vậy m và n cũng chia hết cho 7 nên phân số \(\frac{m}{n}\)không tối giản,trái với giả thiết . Vậy \(\sqrt{7}\)không phải là số hữu tỉ,do đó \(\sqrt{7}\)là số vô tỉ

Chu Ngọc Minh
Xem chi tiết
Yun
9 tháng 4 2017 lúc 22:52

Giả sử \(\sqrt{15}\)là số hữ tỉ

\(\Rightarrow\)\(\sqrt{15}\)\(\frac{m}{n}\){ (m; n) = 1; m, n\(\in\)Z )

\(\Rightarrow\)15 = \(\frac{m^2}{n^2}\)

\(\Rightarrow\)15.\(^{n^2}\)=\(^{m^2}\)  ( * )

\(\Rightarrow\)\(^{m^2}\)\(⋮\)15   \(\Rightarrow\)m\(⋮\)15  ( 1 )

Ta đặt m = 15k ( k \(\in\)N )

Thay m = 15k vào ( * ) ta được

15. \(^{n^2}\)=\(^{\left(15k\right)^2}\)

15. \(^{n^2}\)= 225.\(^{k^2}\)

\(^{n^2}\)= 15. \(^{k^2}\)

\(\Rightarrow\)n\(⋮\)15   ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow\)( m; n )\(\ne\)1   ( Trái với giả sử )

\(\Rightarrow\)\(\sqrt{15}\)là số vô tỉ

Vậy \(\sqrt{15}\)là số vô tỉ ( đpcm ).

Nữ Hoàng Toán Học
9 tháng 4 2017 lúc 22:04

Đúng rồi !

Đỗ Trần Trung Hiếu
Xem chi tiết
Tran Huu Hoang Hiep
Xem chi tiết
The Hell ? What
Xem chi tiết
Nguyễn Doãn Bảo
27 tháng 10 2016 lúc 22:34

căn 2 là svt , căn 3 là svt 

=>căn2 - căn 3 là số vô tỉ 

=> căn 2 - căn 3 + 2 là số vô tỉ 

có gì ko hiểu thì hỏi riêng mình nha

Vi Linh Chi
Xem chi tiết
o0o I am a studious pers...
5 tháng 8 2016 lúc 15:49

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

Minh Thư
8 tháng 10 2019 lúc 20:53

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

Thi Bùi
17 tháng 7 2021 lúc 18:25

phản chứng : giả sử tất cả thuộc Q a đặt a= căn 2+ căn 3(a thuộc Q) . bình phương 2 vế ta có a^2=5+2 căn 6=> căn 6 = a^2-5/2 thuộc Q => vô lí

b đặt căn 2 + căn 3 + căn 5 = a. chuyển căn 5 sang vế a bình phương lên ta có 2 căn 6=a^2-2 căn 5 a

bình phương 1 lần nữa =>căn 5= a^4+20a^2-24/4a^3 thuộc Q => vô lí

c bình phương lên => căn 2=A-1 thuộc Q => vô lí

d tương tự căn 3=Bn-mn thuộc Q => vô lí

chúc bạn học tốt

Khách vãng lai đã xóa
Nguyễn Huy Hải
Xem chi tiết
Nguyễn Đình Dũng
13 tháng 10 2015 lúc 23:03

Giả sử \(\sqrt{15}\)là số hữu tỉ

=> \(\sqrt{15}=\frac{m}{n}\)( phân số tối giản )

=> m = \(\sqrt{15}.n\)

=> m2 = 15n2

=> m2 chia hết cho 15 

=> m chia hết cho 15 

Đặt m = 15k 

=> m2 = 225k2

=> 225k2 = 15n2

=> n2 = 15k2

=> n2 chia hết cho 15

=> n chia hết cho 15

Ta  thấy m và n đều chia hết cho 15 => m và m chưa tối giản 

=> trái với giả thiết

=> \(\sqrt{15}\) là số vô tỉ

Nguyễn Đình Dũng
13 tháng 10 2015 lúc 23:04

Mình rất siêng !