Tìm số nguyên tố m a, 180 ⋮ m+3 ; 120 ⋮ m + 3, m lớn nhất b, 144 ⋮ m+1 ; 196 ⋮ m +1 và 8< m<25 c, 332 chia cho m dư 17 , 555 chia cho m dư 15
a,cho 2^m -1 là số nguyên tố . Chứng minh m là số nguyên tố
b,tìm 3 số nguyên tố p,q,r sao cho p+r=2q và hiệu p-q là số tự nhiên không chia hết cho 6.
c, tìm m,n là các số tự nhiên để A là số nguyên tố
A=\(3^{3m^2+6n-61}+4\)
tìm m là số nguyên tố sao cho
a) 7.m là số nguyên tố
b)( n-2) . (n^2+4)
c) (n-1) . (n^2+3) =m
d) n^3 - 2n^2 + 2n - 4 =m
a) Vì: m là số nguyên tố
=> m>1
=> 7m>7 và chia hết cho 7 (do 7 chia hết cho 7)
=> Là hợp số
=> Vô lí
Vậy ko có SNT m nào t/m.
b) Vì: n thuộc N hay n là SNT cx ok nhá
=> n-2<n^2+4
Vì SNT đc phân tích thành 1 và chính nó
=> n-2=1
=> n=3
c) Giải thích tương tự câu b
=> Tìm đc n=2
=> m=1.7=7
d) Phân tích thành nhân tử r lm giống như câu b,c thoy
a, Tìm số nguyên tố m, n biết : mn + 11 và 7m + n là các số nguyên tố
b, Tìm 3 SNT liên tiếp p,q,r biết p^2 + q^2 + r^2 là số nguyên tố.
Thay hướng dẫn tiếp phần b nhé:
Giả sử cả 3 số p;q;r đều không chia hết cho 3 thế thì p2;q2;r2 chia cho 3 chỉ dư 1 ( vì p;q;r nguyên tố)
Suy ra: p2 + q2 + r2 chia hết cho 3 mà p2 + q2 + r2 >3 suy ra p2 + q2 + r2 là hợp số ( mâu thuẫn đề bài).
Vậy điều giả sử là sai suy ra trong 3 số tồn tại ít nhất một số chia hết cho 3
Không mất tính tổng quat giả sử p<q<r\(\Rightarrow\)p chia hết cho 3 mà p là số nguyên tố suy ra p = 3
Lại có: p;q;r là 3 số nguyên tố liên tiếp nên q = 5; r=7
Vậy (p;q;r) = (3;5;7) và các hoán vị
b, Giả sử 3 số nguyên tố p, q, r đều không chia hết cho 3 mà một số chính phương chia hết cho 3 hoặc chia 3 dư 1
Nếu p^2, q^2, r^2 chia hết cho 3 suy ra p^2 + q^2 + r^2 chia hết cho 3 ( là hợp số, loại )
Nếu p^2, q^2, r^2 cùng chia 3 dư 1 suy ra p^2 + q^2 + r^2 chia hết cho 3 ( loại )
Nếu trong 3 số có 1 số chia hết cho 3 suy ra p^2 + q^2 + r^2 chia 3 dư 2 ( 2 số còn lại chia 3 dư 1 ) loại vì không có số chính phương nào chia 3 dư 2
Nếu trong 3 số có 1 số chia 3 dư 1 thì p^2 + q^2 + r^2 chia 3 dư 1 ( 2 số còn lại chia hết cho 3 ) chọn
Vậy trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3
mà p, q, r là các số nguyên tố nên có 1 số nhận giá trị là 3.
Do 1 ko là số nguyên tố nên bộ ba số nguyên tố có thể là 2 - 3 - 5 hoặc 3 - 5 - 7
Với 3 số nguyên tố là 2 - 3 - 5 thì p^2 + q^2 + r^2 = 2^2 + 3^2 + 5^2 = 38 ( là hợp số, loại )
Vậy 3 số nguyên tố cần tìm là 3 5 7
Nguyễn Vân Huyền đã chọn câu trả lời này
Vai trò của p,q,rp,q,r là như nhau nên giả sử p>q>rp>q>r
Xét p=2p=2,ta tìm được 3 số là 2;3;5.Không thỏa
Xét p=3p=3,ta tìm được 3 số là 3;5;7 thỏa
Xét p>3p>3
Bổ đề:Mọi số nguyên tố >3>3 nến đem bình phương lên thì luôn chia 3 dư 1
thật vậy các số nguyên tố lớn hơn 3 nện có dạng 3k+13k+1 hoặc 3k+23k+2
Nếu có dạng 3k+13k+1,ta có:(3k+1)2=9k2+6k+1≡1(mod3)(3k+1)2=9k2+6k+1≡1(mod3)
Nếu có dạng 3k+23k+2,ta có (3k+2)2=9k2+12k+4≡1(mod3)(3k+2)2=9k2+12k+4≡1(mod3)
Vậy nếu p>3p>3 thì các số q,r>3q,r>3nên khi bình phương lên đều dư 1
⇒p2+q2+r2≡0(mod3)⇒p2+q2+r2≡0(mod3)
Vậy ta có (3;5;7)(3;5;7) và các hoán vị
tìm m là số nguyên tố sao cho
a) 7.m là số nguyên tố
b)( n-2) . (n^2+4)
c) (n-1) . (n^2+3) =m
d) n^3 - 2n^2 + 2n - 4 =m
làm cho mk câu a trước nhé
a) Vì 7m là số nguyên tố và 7 là số nguyên tố => m =1
Cho A bằng 15 chia m , m thuộc N*
a. Tìm giá trị cuả m để A là số nguyên tố
b. Tìm m để A là hợp số
c. Tìm m để A ko phải là số nguyên tố
Ai làm nhanh mình tick cho
Tìm các ưóc nguyên tố của các số sau:
a) 525;
b) 144;
c) 180;
d) 76.
a) Vì 525 = 3 . 5 2 . 7 nên các ước nguyên tố của 525 là: 3; 5; 7.
b) Vì 144 = 2 4 . 3 2 nên các ước nguyên tố của 144 là: 2; 3.
c) Vì 180 = 2 2 . 3 2 . 5 nên các ước nguyên tố của 180 là: 2; 3; 5.
d) Vì 76 = 2 2 . 19 nên các ước nguyền tố của 76 là: 2; 19.
Tìm các ưóc nguyên tố của các số sau:
a) 525
b) 144
c) 180
d) 76
Tìm các ưóc nguyên tố của các số sau:
a, 525
b, 144
c, 180
d, 76
a) Vì 525 = 3. 5 2 .7 nên các ước nguyên tố của 525 là: 3; 5; 7.
b) Vì 144 = 2 4 . 3 2 nên các ước nguyên tố của 144 là: 2; 3.
c) Vì 180 = 2 2 . 3 2 . 5 nên các ước nguyên tố của 180 là: 2; 3; 5.
d) Vì 76 = 2 2 .19 nên các ước nguyền tố của 76 là: 2; 19
Tìm số nguyên dương n sao cho n^2/180-n là số nguyên tố
tìm n thuộc N để:
a) m^2 +12n là số nguyên tố
b) 3^n+6 là số nguyên tố
^ là mũ