Cho tam giác ABC có 3 góc nhọn và AH là đường cao.
a) chứng minh \(AB+CH^2=AC^2+BH^2\)
b) Gọi M N theo thứ tự là hình chiếu của H lên AB, AC. Chứng minh:
AM . AB = AN . AC và tam giác AMN đồng dạng tam giác ACB
Cho tam giác nhọn ABC, AH là đường cao.
a/Chứng minh \(AB^2+CH^2=AC^2+BH^2\)
b/Gọi M, N theo thứ tự là hình chiếu của H trên AB và AC. Chứng minh \(\widehat{AMN}=\widehat{ACB}\)
Cho tam giác ABC vuông tại A,đường cao AH. Gọi M,N lần lượt là hình chiếu vuông góc của H lên AB và AC. a, biết AC bằng 16 cm, sinCAH=4/5. Tính độ dài các cạnh BC,AB và cosB b,chứng minh AM x AB = AN x AC và tam giác ABC đồng dạng với tam giác AMN. c, chứng minh MA x MB + NA × NC=HB×HC d, Chứng minh S AMN/ S ABC=sin²B×sin²C
b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
cho tam giác ABC vuông tại A , kẻ AH vuông góc với BC. gọi M, N là hình chiếu của H lên AB và AC
a, chứng minh tam giác HBA đồng dạng với tam giác ABC
b, chứng minh AM/AN=AC/AB
c, tính diện tiach tam giác AMN biết rằng AH=8cm, BC=20cm
Bãi 4) Cho tam giác ABC có AB = 6cm; AC = 8cm; BC = 10cm. a) Chứng tỏ tam giác ABC vuông b) Vẽ đường cao AH của tam giác ABC. Tính AH; HC và số đo góc B. c) Gọi E; E lần lượt là hình chiếu của H lên AB; AC. Chứng minh: BH^3 = BE^2.BC.
Cho tam giác ABC vuông góc tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. a, Chứng minh AH = MN b, Chứng minh tam giác AHM đồng dạng với tam giác AHB rồi suy ra AH^2 = AM . AB c, Chứng minh tam giác AMN đồng dạng với tam giác ACB d, Cho AB = 6cm, AC = 8cm. Tính diện tích của tam giác AMN.
_____ + H2O --> H2SO4
CuCl2 + NaOH --> NaCl + ____
N2O5 + H2O --> _____
H2 + ___ --> Cu + ___
Fe + ____ --> FeSO4 + H2
BaCl2 + AgNO3 --> _____ + _____
____ + ____ --> Al2O3
CuO + ___ --> Cu + CO2
KMnO4 --> ____ + ____ + _____
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. a) Biết AB = 2cm, AC =2/3 m. Tính độ dài BC, AH và số đo góc B. b) Gọi E là trung điểm AC của tam giác ABC và K là hình chiếu vuông góc của A lên BE. Chứng minh BK BE = BH BC và tam giác KEC đồng dạng với tam giác CEB c) Giả thiết rằng tia CK đồng thời là phân giác của góc C của tam giác ABC. Chứng minh 2.cos B = taB
Cho tam giác ABC có ba góc nhọn và AH là đường cao.
a) Chứng minh AB2 + CH2 = AC2 + BH2.
b) Gọi M, N theo thứ tự là hình chiếu của H lên AB, AC. Chứng minh AM .AB = AN .AC
Cho tam giác ABC nhọn(AB<AC) nội tiếp đường tròn nội tiếp đường tròn
tâm O
ĐỀ SỐ 2
Kẻ đường cao AH. Gọi M, N là hình chiếu vuông góc của H lên AB, AC. Kẻ NE
vuông góc với AH. Đường thẳng vuông góc với AC kẻ từ C cắt đường tròn tại I và
cắt tia AH tại D. Tia AH cắt đường tròn tại F
a) Chứng minh ABC+ACB=AIC và tứ giác DENC nội tiếp.
b) Chứng minh AM. AB = AN . AC.
c) Chứng minh tứ giác BFIC là hình thang cân.
d) Chứng minh tứ giác BMED nội tiếp .
Cho tam giác ABC có góc A= 90*, đường cao AH. Gọi D, E là hình chiếu của H trên AB, AC theo thứ tự đó.
1) Chứng minh tam giác AHB ~ tam giác CHA và AH2 = BH. CH
2) Giả sử BH= 1,8 cm; CH= 3,2 cm. Tính DE.
3) Gọi M là trung điểm của BE. Chứng minh HM vuông góc AD
4) Chứng minh: AD.AB= AE. AC
5) Chứng minh: CE/BD= AC2/AB2.
Ko cần vẽ hình đâu ah. Mình đang cần gấp, giúp mình với
Tớ thấy thiếu thiếu gì đó Kiểm tra lại đề đi !!?