cho B=\(\sqrt{x+11}\)
a,Tìm x để B có nghĩa
b,Tìm x biết B >2
c,Tìm giá trị nhỏ nhất của B
Câu 1 :Cho 2 biểu thức
A=\(\sqrt{2x^2-3x+1}\) vá B=\(\sqrt{x-1}.\sqrt{2x-1}\)
a.Tìm x để A có nghĩa
b.Tìm x để B có nghĩa
c.Với giá trị nào của x thì A=B
d.Với giá trị nào của x thì chỉ A có nghĩa, còn B không có nghĩa
Câu 2: Biết \(x^2+y^2=117\)Tìm giá trị lớn nhất ,nhỏ nhất của biểu thức A = 2x+3y
Câu 1
a)
Để biểu thức A có nghĩa thì \(2x^2-3x+1\ge0\Leftrightarrow\left(x-1\right)\left(2x-1\right)\ge0\)
\(\Leftrightarrow x\ge1\)
b)
Để biểu thức B có nghĩa thì \(x-1\ge0;2x-1\ge0\Rightarrow x\ge1\)
c)
Với \(x\ge1\) thì biểu thức A luôn luôn bằng biểu thức B
d)
Vô lý vcl
Câu 2
Xài BĐT Bunhiacopski:
\(A^2=\left(2x+3y\right)^2=\left(2\cdot x+3\cdot y\right)^2\le13\left(x^2+y^2\right)=1521\)
\(\Rightarrow A\le39\)
Câu 1:
a) A=\(\sqrt{2x^2-3x+1}\)
ĐKXĐ: \(\orbr{\begin{cases}x\le\frac{1}{2}\\x\ge1\end{cases}}\)
b) B=\(\sqrt{x-1}\cdot\sqrt{2x-1}\)
ĐKXĐ:\(\orbr{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\)
=>\(x\ge1\)
c) Với \(x\ge1\)thì A=B đc xác định
d) Với \(x\le\frac{1}{2}\)thì A có nghĩa,B không có nghĩa
Cho A = \(\sqrt{x+5}+\frac{2}{11}\) . Tìm giá trị nhỏ nhất của A
Cho B = \(\frac{3}{19}-3.\sqrt{x-2}\). Tìm giá trị lớn nhất của B
Cho C = \(\frac{\sqrt{x-3}}{2}\). Tìm \(x\in Z\)và x < 50 để C có giá trị nguyên
Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)
Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5
Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)
Vậy B đạt giá trị lớn nhất là 3/19 khi và chỉ khi x = 5
C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2
Suy ra x là số chính phương lẻ
Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}
cho A = \(\frac{3}{2+\sqrt{2x+3-x^2}}\)
a) Tìm x để A có nghĩa.
b) Tìm giá trị nhỏ nhất và giá trị lớn nhất của A.
a) Để A có nghĩa :
\(\Rightarrow\sqrt{2x+3-x^2\: }\Leftrightarrow2+\sqrt{2x+3-x^2}\ge2\forall x\)
\(\Rightarrow\sqrt{-\left(x-1\right)^2+4}\ge0\)
\(\Leftrightarrow-\left(x-1\right)^2\ge-4\)
\(\Leftrightarrow\left(x-1\right)^2\le4\)
\(\Rightarrow3\ge x\ge-1\)
Vậy.....
A=\(\sqrt{2x^2-3x+1}\) vá B=\(\sqrt{x-1.}\sqrt{2x-1}\)
a.Tìm x để A có nghĩa
b.Tìm x để B có nghĩa
c.Với giá trị nào của x thì A = B
d.Với giá trị nào của x thì chỉ A có nghĩa, còn B không có nghĩa
Câu 2: Biết x2 + y2 = 117 Tìm giá trị lớn nhất ,nhỏ nhất của biểu thức A = 2x+3
a)+) \(A=\sqrt{2x^2-3x+1}=\sqrt{2x^2-2x-x+1}\)
\(=\sqrt{2x\left(x-1\right)-\left(x-1\right)}=\sqrt{\left(2x-1\right)\left(x-1\right)}\)
Để A có nghĩa thì \(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge1\end{cases}}\Leftrightarrow x\ge1\)
hoặc \(\hept{\begin{cases}2x-1\le0\\x-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\le1\end{cases}}\Leftrightarrow x\le\frac{1}{2}\)
A có nghĩa\(\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le\frac{1}{2}\end{cases}}\)
+) B có nghĩa\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
c) \(A=B\Leftrightarrow\sqrt{\left(x-1\right)\left(2x-1\right)}=\sqrt{x-1}.\sqrt{2x-1}\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
Vậy \(x\ge1\)thì A = B
d) \(x\le\frac{1}{2}\)
Cho \(A=\sqrt{x+2}+\dfrac{3}{11};B=\dfrac{5}{17}-3\sqrt{x-5}\)
a) Tìm giá trị nhỏ nhất của A
b) Tìm giá trị lớn nhất của B
a) A có giá trị nhỏ nhất khi \(\sqrt{x+2}=0\)
Vậy giá trị nhỏ nhất của A là \(\dfrac{3}{11}\).
b) Ta có: -3\(\sqrt{x-5}\) \(\le0\)
=> B có giá trị lớn nhất khi -3\(\sqrt{x-5}\) = 0
Vậy giá trị lớn nhất của B là \(\dfrac{5}{17}\).
a) Tìm giá trị nhỏ nhất của biểu thức : "B=I x+11 I + I 1-y I + 2017 "và cho biết giá trị của "x , y" để "B" đạt giá trị nhỏ nhất.
Để B nhỏ nhất nên | x + 11| = 0 và | 1 -y | = 0
Với | x + 11 | = 0 thì x + 11 = 0 nên x = -11
Với | y - 1 | = 0 thì y - 1 = 0 nên y =1
Vậy x = -11 , y =1
hok tốt
Cho biểu thức
\(P=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}.\)
a) Tìm điều kiện để P có nghĩa, rút gọn biểu thức P;
b) Tìm các giá trị của x để P<-1/3
; c) Tính giá trị nhỏ nhất của P
Cho biểu thức
\(P=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}.\)
a) Tìm điều kiện để P có nghĩa, rút gọn biểu thức P;
b) Tìm các giá trị của x để P<-1/3
; c) Tính giá trị nhỏ nhất của P
Mọi người giúp mình với, 3 tiếng nữa phải đi học rồi
Cho biểu thức
\(P=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}.\)
a) Tìm điều kiện để P có nghĩa, rút gọn biểu thức P;
b) Tìm các giá trị của x để P<-1/3
; c) Tính giá trị nhỏ nhất của P
Cho biểu thức
\(P=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}.\)
a) Tìm điều kiện để P có nghĩa, rút gọn biểu thức P;
b) Tìm các giá trị của x để P<-1/3
; c) Tính giá trị nhỏ nhất của P