cho A = \(\frac{7!\cdot4!}{10!}\cdot\left(\frac{8!}{3!\cdot5!}-\frac{9!}{2!\cdot7!}\right)\)
Tính [A]
Tính nhanh :
\(A=\left(1-\frac{2}{6\cdot7}\right)\left(1-\frac{2}{7\cdot8}\right)\left(1-\frac{2}{8\cdot9}\right)\cdot\cdot\cdot\left(1-\frac{2}{51\cdot52}\right)\)
\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)\cdot\cdot\cdot\left(1+\frac{1}{99\cdot101}\right)\)
đụ cha mi
mi trù ta thi rớt HK II mà ta giúp mày hả
mấy bài này cũng dễ ẹt nữa
đừng có mơ ta sẽ giúp mày
ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha
\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{99\cdot101}\right)\)
\(B=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\frac{100^2}{99\cdot101}\)
\(B=\frac{2^2\cdot3^2\cdot4^2\cdot\cdot\cdot100^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot\cdot\cdot99\cdot101}\)
\(B=\frac{\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot\cdot\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot\cdot\cdot101\right)}\)
\(B=\frac{100\cdot2}{1\cdot101}\)
\(B=\frac{200}{101}\)
THỰC HIỆN PHÉP TÍNH:
A) \(\frac{3}{5}:\frac{7}{3}+\frac{3}{5}:\frac{7}{4}-1\frac{3}{5}\)
B) \(\frac{\left(2^2\cdot5\cdot7\right)\cdot\left(5^2\cdot7^3\right)}{\left(2\cdot5\cdot7^2\right)^2}\)
GIẢI GIÚP MIK. BÀI THI KHẢO SÁT CHẤT LƯỢNG ĐẦU NĂM CỦA MK ( HẠN NGÀY 29, 30/8)
a)
\(=\frac{3}{5}.\frac{3}{7}+\frac{3}{5}.\frac{4}{7}-\left(1+\frac{3}{5}\right)\)
\(=\frac{3}{5}\left(\frac{3}{7}+\frac{4}{7}\right)-1-\frac{3}{5}\)
\(=\frac{3}{5}-1-\frac{3}{5}\)
\(=-1\)
b) \(=\frac{2^2.5.7.5^2.7^3}{2^2.5^2.7^{2.2}}\)
\(=\frac{2^2.5^{1+2}.7^{3+1}}{2^2.5^2.7^4}=\frac{2^2.5^3.7^4}{2^2.5^2.7^4}=2^{2-2}.5^{3-2}.7^{4-4}=2^0.5^1.7^0=1.5.1=5\)
Bài 1:Tìm x
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2\cdot x+1\right)\cdot\left(2\cdot x+3\right)}=\frac{9}{19}\)
Bài 2: Tính nhanh
\(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2016\cdot2018}\)
ai giúp mình với gấp lắm không có bài là bị phạt đó
Bài 1 :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{9}{19}\)
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{9}{19}\)
\(\Leftrightarrow1-\frac{1}{2x+3}=\frac{9}{19}\)
\(\Leftrightarrow\frac{1}{2x+3}=1-\frac{9}{19}\)
\(\Leftrightarrow\frac{1}{2x+3}=\frac{10}{19}\)
\(\Leftrightarrow10.\left(2x+3\right)=19\Leftrightarrow2x+3=\frac{19}{10}\)
\(\Leftrightarrow2x=\frac{19}{10}-3\Leftrightarrow2x=-\frac{11}{10}\)
\(\Leftrightarrow x=-\frac{11}{20}=-0,55\)
Bài 2 :
\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2016.2018}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{2016}-\frac{1}{2018}\)
\(=\frac{1}{2}-\frac{1}{2018}=\frac{504}{1009}\)
\(\sqrt[2]{4\cdot9\frac{8}{8}+\frac{48\cdot11+5}{1\cdot\frac{814}{5+\frac{6145}{1\cdot\frac{821}{614}}}}}2548-\frac{8452}{14\cdot\frac{58}{96\cdot\frac{41}{\frac{24}{1\cdot\frac{975545}{1421+\frac{84874}{\frac{1+2+3+4+5+6+7+8+9\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot8\cdot9}{2\cdot\frac{2}{1}}}}}}}}\)
G=\(\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\cdot\frac{50^2}{49.51}\)
H=\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot\left(1-\frac{3}{7}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{10}{7}\right)\)
Giúp mình vs
G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)
=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)
=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)
=> G = \(\frac{2.50}{1.51}\)
=> G = \(\frac{100}{51}\)
\(G=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{50^2}{49.51}\)
\(=\frac{\left(2.3.4.....50\right).\left(2.3.4.....50\right)}{\left(1.2.3.....49\right).\left(3.4.5.....51\right)}\)
\(=\frac{50.2}{51}=\frac{100}{51}\)
\(H=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right).\left(1-\frac{3}{7}\right).....\left(1-\frac{10}{7}\right)\)
\(=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right).\left(1-\frac{3}{7}\right).....\left(1-\frac{7}{7}\right).....\left(1-\frac{10}{7}\right)\)
\(=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right).\left(1-\frac{3}{7}\right).....0.....\left(1-\frac{10}{7}\right)\)
\(=0\)
Tính tổng :
a) \(\frac{1}{3\cdot5\cdot7}+\frac{1}{5\cdot7\cdot9}+\frac{1}{7\cdot9\cdot11}+...+\frac{1}{2013\cdot2015\cdot2017}\)
b) \(\left(1-\frac{1}{2^2}\right)\cdot\left(1-\frac{1}{3^2}\right)\cdot\left(1-\frac{1}{4^2}\right)\cdot...\cdot\left(1-\frac{1}{2017^2}\right)\)
c) \(\left(1-\frac{1}{1+2}\right)\cdot\left(1-\frac{1}{1+2+3}\right)\cdot...\cdot\left(1-\frac{1}{1+2+3+...+2017}\right)\)
\(41\sqrt[9^1]{8\sqrt[2]{\frac{12}{2.85\frac{1\cdot2+3\cdot4+5\cdot6+7\cdot8+9\sqrt[4]{16}}{2\cdot\frac{12}{2}\sqrt{4^2}-7^2}}}4\cdot5\cdot6\cdot7\cdot8\cdot9}\)
Ô phép tính khủng. Cái này do bạn chế ra à !
Bài 1:
a) \(\frac{1}{1}\cdot2+\frac{1}{2}\cdot3+\frac{1}{3}\cdot4+...+\frac{1}{n}\cdot\left(n+1\right)\)
b) \(\frac{1}{1}\cdot2\cdot3+\frac{1}{2}\cdot3\cdot4+\frac{1}{3}\cdot4\cdot5+...+\frac{1}{a}\cdot\left(a+1\right)\cdot\left(a+2\right)\)
tập hợp các số nguyên x thỏa mãn
\(x\cdot\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}\right)<1\frac{6}{7}\)
Lời giải:
$x(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7})< 1\frac{6}{7}$
$x(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7})< \frac{13}{7}$
$x(1-\frac{1}{7})< \frac{13}{7}$
$x.\frac{6}{7}< \frac{13}{7}$
$x< \frac{13}{7}: \frac{6}{7}=\frac{13}{6}$
Vì $x$ là số nguyên nên $x\leq 2$
Vậy $x$ là các số nguyên sao cho $x\leq 2$.