Cho hình thang ABCD có đáy AB < đáy CD. Chứng minh rằng nếu góc ADC = góc BCD thì AD = BC.
Cho hình thang ABCD ( AB//CD), góc ADC > góc BCD. Chứng minh AD bé hơn BC
Nếu hình thang ABCD với hai đáy AB và CD (AB<CD) thỏa mãn góc BCD = góc ADC thì góc BAD bằng bao nhiêu?
Cho hình thang ABCD ( AB//CD). a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy. b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC.
Cho hình thang ABCD ( AB//CD).
a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trungđiểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.
b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A vàD cắt nhau tại trung điểm của cạnh bên BC.
a) Theo đề bài ta có: \(\widehat{DAF}+\widehat{ADF}=\frac{\widehat{DAB}+ADC}{2}=\frac{180^o}{2}=90^o\)
Xét tam giác AFD có \(\widehat{DAF}+\widehat{ADF}=90^o\) nên \(\widehat{AFD}=90^o\)
Hay tam giác AFD vuông tại F.
Gọi E là trung điểm AD.
Xét tam giác vuông ADF có FE là trung tuyến ứng với cạnh huyền nên EF = AD/2
Lại có do F là trung điểm BC; E là trung điểm AD nên EF là đường trung bình hình thang.
Từ đó suy ra \(EF=\frac{AB+BC}{2}\)
Vậy nên AD = AB + BC.
b) Giả sử AD = AE + ED.
Gọi E là trung điểm AD. Do AD = AB + CD nên FE = (AB + DC)/2
Ta có E là trung điểm AD. Vậy nên EF là đường trung bình hình thang hay hay Flà trung điểm BC.
Cô vẽ hình cho con với dc ko ạ
Cho hình thang ABCD ( AB//CD).
a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trungđiểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.
b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A vàD cắt nhau tại trung điểm của cạnh bên BC.
Tham khảo : Câu hỏi của Trần Nhật Duy - Toán lớp 8 - Học toán với OnlineMath
Cho hình thang ABCD ( AB//CD).
a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trungđiểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.
b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A vàD cắt nhau tại trung điểm của cạnh bên BC.
Bài 1 cho hình thang cân ABCD có đáy nhỏ AB. Gọi E là giao điểm của AD và BC a) Chứng minh góc BAC= góc ACD b) Chứng minh ∆ADC= ∆BCD c) Gọi H và K là trung điểm của AB; DC. Chứng minh EA=EB d) Chứng minh E; H và K thẳng hàng Bài 2 Cho ∆ABC cân tại A. Lấy điểm E thuộc cạnh AB, qua E vẽ đường thẳng dvsong song với BC và cắt AC tại F. Gọi H và K lần lượt là trung điểm của EF và BC a) Chứng minh tứ giác EFCB là hình thang cân b) Chứng minh AK vuông góc BC và AH là đường phân giác của góc BAC c) Chứng minh A, H, K thẳng hàng
Cho hình thang ABCD có đáy là AB, CD và AD + BC = CD. Chứng minh rằng các tia phân giác của góc A và góc B cắt nhau tại điểm thuộc BC
Bạn xem lời giải ở đường link sau nhé:
Câu hỏi của Amber Shindouya - Toán lớp 8 - Học toán với OnlineMath
Bài 1 cho hình thang cân ABCD có đáy nhỏ AB. Gọi E là giao điểm của AD và BC a) Chứng minh góc BAC= góc ACD b) Chứng minh ∆ADC= ∆BCD c) Gọi H và K là trung điểm của AB; DC. Chứng minh EA=EBd) Chứng minh E; H và K thẳng hàng Bài 2Cho ∆ABC cân tại A. Lấy điểm E thuộc cạnh AB, qua E vẽ đường thẳng d song song với BC và cắt AC tại F. Gọi H và K lần lượt là trung điểm của EF và BC a) Chứng minh tứ giác EFCB là hình thang cân b) Chứng minh AK vuông góc BC và AH là đường phân giác của góc BAC c) Chứng minh A, H, K thẳng hàng