Tìm số tự nhiên n để
n+8 chia het cho n+3
n+6 chia het cho n-1
Tìm số tự nhiên n biết::
a) n + 13 chia het cho(n+1)
b) 2n + 15 chia het cho ( n+3)
c) 6n + 24 chia het cho ( 2n +3)
d) 2n+6 chia het cho ( 3n +1)
e) 12n + 8 chia het cho ( 3n-1)
g) n^2 + 4n - 7 chia het cho ( n-1)
Tìm số tự nhiên n biet
2n+3 chia het cho n-2
n+2 chia het cho n
3n+5 chia het cho n
tìm tất cả các số tự nhiên n để 3n+13 chia het cho n+1
3n + 13 = (3n + 3) +10 vì 3n + 3 chia hết n +1 nên chỉ cần 10 chia hết cho n+1 là được
ta có 10 chia hết cho :( 0+1) , (1+1) ,(4+1) ,(9+1)
vậy các số tự nhiên n là : 0 ; 1; 4 ; 9
Tìm số tự nhiên n để 2n+1 chia het cho 16-3n
Tìm n thuộc n để
n+6 chia het cho n-3
2n+8 chia het cho n+2
3n +5 chia het -2n+1
giup minh lam bai nay nhe cac ban
Ta có
n+6 chia hết cho n-3
=> n-3 +9 chia hết cho n-3
Vì n-3 chia hết cho n-3
=> 9 chia hết cho n-3
Xét các ước của 9 để tìm đk n là số tự nhiên
Ta có:
2n+8 chia hết cho n+2
=>2(n+2)+4 chia hết cho n+2
Các phần sau làm tương tự câu trên
Ta có
3n+5 chia hết cho -2n+1
=> 3n+5 chia hết cho 2n-1
=> 6n+10 chia hết cho 2n-1
=>3(2n-1)+13 chia hết cho 2n-1
Phần sau làm tương tự nhé bạn
Tìm số tự nhiên n biết
2n^2+3n+7 chia het cho 2n+3
n^2+9n+9 chia het cho n-4
Tìm số tự nhiên n để:
2n+7chia hết cho 3n-1
3n+1 chia het cho 11-2n
2n + 7 chia hết cho 3n - 1
3(2n + 7) chia hết cho 3n - 1
6n + 21 chia hết cho 3n - 1
6n - 2 + 23 chia hết cho 3n - 1
2(3n - 1) + 23 chia hết cho 3n - 1
=> 23 chia hết cho 3n - 1
=> 3n - 1 thuộc Ư(23) = {1 ; 23}
Xét 2 trường hợp , ta có :
3n - 1 = 1 => 3n = 2 => n = 2/3
3n - 1 = 23 => 3n = 24 => n = 8
3n + 1 chia hết cho 11 - 2n
11 - 3n + 1 - 11 chia hết cho 11 - 2n
11 - 2n - n - 10 chia hết cho 11 - 2n
=> n - 10 chia hết cho 11 - 2n
=> 22(n - 10) chia hết cho 11 - 2n
=> 22n - 220 chia hết cho 11 - 2n
=> 121 - 22n - 220 - 121 chia hết cho 11 - 2n
=> 11(11 - 2n) - 220 - 121 chia hết cho 11 - 2n
=> 220 - 121 chia hết cho 11 - 2n
=> 99 chia hết cho 11 - 2n
=> 11 - 2n thuộc Ư(99) = {1 ; 9 ; 11; 99}
Còn lại xét 4 trường hợp giống bài trên nha
3(2n + 7) chia hết cho 3n - 1
6n + 21 chia hết cho 3n - 1
6n - 2 + 23 chia hết cho 3n - 1
2(3n - 1) + 23 chia hết cho 3n - 1
=> 23 chia hết cho 3n - 1
=> 3n - 1 thuộc Ư(23) = {1 ; 23}
Xét 2 trường hợp , ta có :
3n - 1 = 1 => 3n = 2 => n = 2/3
3n - 1 = 23 => 3n = 24 => n = 8
3n + 1 chia hết cho 11 - 2n
11 - 3n + 1 - 11 chia hết cho 11 - 2n
11 - 2n - n - 10 chia hết cho 11 - 2n
=> n - 10 chia hết cho 11 - 2n
=> 22(n - 10) chia hết cho 11 - 2n
=> 22n - 220 chia hết cho 11 - 2n
=> 121 - 22n - 220 - 121 chia hết cho 11 - 2n
=> 11(11 - 2n) - 220 - 121 chia hết cho 11 - 2n
=> 220 - 121 chia hết cho 11 - 2n
=> 99 chia hết cho 11 - 2n
=> 11 - 2n thuộc Ư(99) = {1 ; 9 ; 11; 99}
chúc bn hok tốt @_@
Tìm số tự nhiên N để
a, N + 4 chia het cho N + 1
b, N ^2 + N chia het cho N + 1
a.\(\text{Ta có : }n+4⋮\left(n+1\right)\)
\(\Rightarrow n+1+3⋮\left(n+1\right)\)
\(\text{Mà }n+1⋮\left(n+1\right)\Rightarrow3⋮\left(n+1\right)\)
\(\Rightarrow n+1\inƯ\left(3\right)\)
\(Ư\left(3\right)=\left\{1;3\right\}\)
\(\Rightarrow n=\orbr{\begin{cases}0\\2\end{cases}}\)
b. Tương tự nhé
b) \(n^2+n⋮n+1\Rightarrow n\left(n+1\right)⋮n+1\) đúng với mọi \(n\in N\)
Tìm số tự nhiên n biết 3n+1 chia het cho 11-2n