cho x2+y2 chia hết cho 3 . CMR: x và y đều chia hết cho 3
y2+x2 chia hết cho 7.Chứng tỏ y và x chia hết cho 7
Cho x,y thuộc Z thỏa mãn \(x^2+y^2\)chia hết cho 3.CMR x,y đều chia hết cho 3
CMR vs mọi x,y thuộc N sao cho3x-y+1 và 2x+3y-1 đều chia hết cho 7 thì x,y chia 3 đều dư 3
cho x,y,z là 3 số nguyên thỏa man: x2+y2=z2
Chứng minh A=xy chia hết cho 12
Do 1 số chính phương khi chia cho 3 chỉ có thể có số dư là 0 hoặc 1 nên nếu \(x,y⋮̸3\) thì \(z^2=x^2+y^2\equiv1+1\equiv2\left[3\right]\), vô lí. Vậy trong 2 số x, y phải tồn tại 1 số chia hết cho 3.
Tương tự, một số chính phương khi chia cho 4 chỉ có thể có số dư là 0 hoặc 1 nên nếu \(x,y⋮̸4\) thì \(z^2=x^2+y^2\equiv1+1\equiv2\left[4\right]\), vô lí. Vậy trong 2 số x, y phải có 1 số chia hết cho 4.
Từ 2 điều trên, kết hợp với \(\left(4,3\right)=1\), thu được \(xy⋮3.4=12\). Ta có đpcm.
giả sử (x mũ 2 +y mũ 2)chia hết cho 3.CMR y chia hết cho 3,x chia hết cho 3
Chứng minh rằng
a) với x;y thuộc N,CMR: 5*x+47*y chia hết cho 17 khi và chỉ khi x+6*y chia hết cho 17
b) với x;y thuộc N,CMR: x+2*y chia hết cho 5 khi và chỉ khi 3*x+16*y chia hết cho 5
a/
\(x+6y⋮17\Rightarrow5\left(x+6y\right)=5x+30y⋮17\)
\(5x+47y=\left(5x+30y\right)+17y\)
\(5x+30y⋮17\left(cmt\right);17y⋮17\Rightarrow5x+47y⋮17\)
b/
\(3x+16y⋮5\Rightarrow2\left(3x+16y\right)=6x+32y=\left(5x+30y\right)+\left(x+2y\right)⋮5\)
Mà \(5x+30y⋮5\Rightarrow x+2y⋮5\)
giar sử ( x^2 + y^2 ) chia hết cho 3 . CMR x chia hét cho 3 , y chia hết cho 3
Dễ mak bạn
1 số chính phương chia 3 dư 0 hoặc 1
X^2 phải chia hết cho 3 y^2 cx chia hết cho 3
Nên x,y chia hết cho 3
Bài này dễ anh giải đc
Làm ny anh nha?
Ta có:
số chính phương chia 3 dư 1 hoặc dư 0
mà: x2+y2 chia hết cho 3
nên x2 và y2 đồng thời chia hết cho 3
Mặt khác; 3 là số nguyên tố nên
x chia hết cho 3 và y chia hết cho 3
Vậy x chia hết cho 3, y chia hết cho 3 với x2+y2 chia hết cho 3
giả sử phản chứng rằng x ko chia hết cho 3
ta có : \(x^2\equiv1\) ( mod 3 ) \(\Rightarrow y^2\equiv2\)( mod 3 )
\(y^2\equiv0\) ( mod 3 ) ,còn nếu y ko chia hết cho 3 thì \(y^2\equiv1\) 9 ( mod 3 )
vậy x chia hết cho 3 . Chứng minh tượng tự thì y cũng chia hết cho 3
Cho x, y , z khác 0. Cmr nếu a=x2-yz, b=y2-xz , c=z2-xy thì (ax+by+cz) chia hết cho (a+b+c)
help em gấp ạ
\(ax+by+cz\\ =x\left(x^2-yz\right)+y\left(y^2-xz\right)+z\left(z^2-xy\right)\\ =x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
Lại có \(a+b+c=x^2+y^2+z^2-xy-yz-xz\)
Vậy ta được đpcm
giả sử (x mũ 2 +y mũ 2)chia hết cho 3.CMR y chia hết cho 3,x chia hết cho3
nếu x chia 3 dư 1 hoặc dư 2 ,y chia 3 dư 1 hoặc dư => \(x^2\)chia 3 dư 1, y2 chia 3 dư 1=> x2+y2 chia 3 dư 2=> không thỏa mãn
nếu x chia hết cho 3, y chia hết cho 3=> x2chia hết cho 3, y2chia hết cho 3=>x2+y2 chia hết cho 3
=> x2+y2 chia hết cho 3 <=> x chia hết cho 3, y chia hết cho 3=> đpcm