Tìm số dư trong mỗi phép chia sau:
a) 43624362 cho 11 b) 301293 cho 13
c) 19991999 cho 99 d) 20012010 cho 2003
e) 35150 cho 425 f) 31000 cho 49
(Giải Toán Casio) (đồng dư thức)
Giúp mk vs! mai mk nộp rùi.
Tìm số dư và thương trong các phép chia sau:
a) 472 chia cho 43
b) 571 chia cho 13
c) 732 chia cho 61
d) 704 chia cho 44
a) 472 chia cho 43
Ta có 472 = 43.10 + 42
Vậy phần dư là 42 thương là 10 .
b) 571 chia cho 13
Ta có 571 = 43.13 + 12
Vậy phần dư là 12 thương là 43 .
c) 732 chia cho 61
Ta có 732 = 61.12
Vậy phần dư là 0 thương là 12 .
d) 704 chia cho 44
Ta có 704 = 44.16
Vậy phần dư là 0 , thương là 44
Bài 1: Tìm số dư trong phép chia 31996 cho 13
Bài 2: Chứng minh rằng (21996-2) : 31
Bài 3: Chứng minh rằng 0,3(19831983-19171917) là một số nguyên
Bài 4 : Chứng minh rằng :
a) 24n-1 chia hết cho 15 b) 270+370 chia hết cho 13
c) 19801930+19451975+1 chia hết cho 7 d) 122n+1-11n+2 chia hết cho 133
e) 22225555+55552222 chia hết cho 7
g, 6^1001 + 1 chia hết cho 7
Bài 5 : Tìm số dư trong phép chia :
a) Chia 43624362 cho 11 b) Chia 35150 cho 425 c) Chia 8! Cho 11
GIÚP TỚ NKE EVERYONE. I WILL TICK FOR YOU.
Đêm ùi mà còn nhờ 1 đống zậy muốn xỉu lun oy
Toán khó phải có người lo mink ko lo đc mấy bn lo dùm mink nka
Tìm số dư trong các phép chia sau:
a, 109^345 chia cho 14
b, 11^11^11 chia cho 30
c, ( 12^13^14 + 12^2000 ) chia cho 5
Câu b và câu c có lũy thừa tầng
1. Viết số 1995^1995 thành tổng của các số tự nhiên. Tổng các lập phương đó chia cho 6 thì dư bao nhiêu ?
2. Tìm 3 chữ số tận cùng của 2^100 viết trong hệ thập phân
3. Tìm số dư trong phép chia cái số sau cho 7
a. 22^22 + 55^55
b. 3^1993
c. 1992^1993 + 1994^1995
d. 3^2^1930
4. Tìm số dư khi chia:
a. 2^1994 cho 7
b. 3^1998 + 5^1998 cho 13
c.A= 1^3 + 2^3 + 3^3 + ... + 99^3 chia cho B= 1 + 2 + 3 + ... + 99
1.
Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)
Gọi \(S=a_1^3+a_2^3+...+a_n^3=a_1^3+a_2^3+...+a_n^3-a+a\)
\(S=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)+a\)
Vì mỗi dấu ngoặc đều chia hết cho 6 do là tích 3 số tự nhiên liên tiếp
\(\Rightarrow S\) chia 6 dư a
Mà \(1995\equiv3\left(mod6\right)\Rightarrow1995^{1995}\equiv3\left(mod6\right)\)
Vậy S chia 6 dư 3
2.
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}=\left(B\left(25\right)-1\right)^{10}=B\left(25\right)+1\)
Vì 2100 chẵn nên 3 chữ số tận cùng của nó chẵn nên có thể là 126; 376; 626; 876
Lại có 2100 chia hết cho 8 => ba chữ số tận cùng chi hết cho 8
=> Ba CTSC là 376
3.
\(22^{22}+55^{55}=\left(BS7+1\right)^{22}+\left(BS7-1\right)^{55}=BS7+1+BS7-1=BS7⋮7\)
\(3^{1993}=3\cdot\left(3^3\right)^{664}=3\cdot\left(BS7-1\right)^{664}=3\left(BS7+1\right)=BS7+3\) nên chia 7 dư 3
\(1992^{1993}+1994^{1995}=\left(BS7-3\right)^{1993}+\left(BS7-1\right)^{1995}=BS7-3^{1993}+BS7-1=BS7-\left(BS7+3\right)+BS7-1=BS7-4\) chia 7 dư 3
\(3^{2^{1930}}=3^{2860}=3\cdot\left(3^3\right)^{953}=3\cdot\left(BS7-1\right)^{953}=3\left(BS7-1\right)=BS7-3\) chia 7 dư 4
4.
\(2^{1994}=2^2\cdot\left(2^3\right)^{664}=4\left(BS7+1\right)^{664}=4\left(BS7+1\right)=BS7+4\) chia 7 dư 4
\(3^{1998}+5^{1998}=\left(3^3\right)^{666}+\left(5^2\right)^{999}=\left(BS7-1\right)^{666}+\left(BS7-1\right)^{999}=BS7+1+BS7-1=BS7⋮7\)
\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+99\right)^2=B^2⋮B\)
CM bằng quy nạp (có trên mạng)
Bài 1
a) Tìm số dư trong phép chia 4.10mux100+1 khi chia cho 3
b) Tìm số dư trong phép chia 1+2+3+4+...+99+100 khi chia cho 9
c) Tìm số dư của phép chia 1+3+5+7+...+17+19 khi chia cho 2
1.Cho ba số tự nhiên abc. Trong đó a và b khi chia cho 5 dư 3 còn c khi chia cho 5 dư 2
a,Chứngs tỏ rằng mỗi tổng (cộng ) sau chia hết cho 5
A+c; b+c;a-b;
B,mỗi tổng hiệu sau có chia hết cho 5 ko
A+b+c;a+b-c;a+c-b
2. Tìm số tự nhiên x để
a, 113+x÷7
B, 113+x:13
3. Tính chứng tỏ rằng
a, ab có gạch ngang trên đầu +ba có gạch ngang trên đầu chia hết cho 11
b, abccó gạch trên đầu -cba có gạch ngang chia hết cho 99
c, 8 ngũ 10 - 8 ngũ 9-8 ngũ 8 ÷ 55
d, 7 ngũ 6+7 ngũ 5 -7 ngũ 4 :11
e,81 ngũ 7 -27 ngũ 9 - 9ngũ 13 ÷45
G, 10 ngũ 9+10 ngũ 8 + 10 ngũ 7 : 555
Đề bài
Một số có tổng các chữ số chia cho 99 (cho 33) dư mm thì số đó chia cho 99 ( cho 33) cũng dư mm.
Ví dụ: Số 15431543 có tổng các chữ số bằng: 1+5+4+3=131+5+4+3=13. Số 1313 chia cho 99 dư 44 chia cho 33 dư 11. Do đó số 15431543 chia cho 99 dư 44, chia cho 33 dư 11.
Tìm số dư khi chia mỗi số sau cho 99, cho 33:
1546;1526;2468;1011
Số 1546 = 1 + 5 + 4 + 6 = 16 : 9 dư 7 và chia 3 dư 1.
Vậy 1546 chia cho 9 dư 7 và chia cho 3 dư 1
Số 1527 = 1 + 5 + 2 + 7 = 15 : 9 dư 6 và chia hết cho 3.
Vậy 1527 chia hết cho 3 và chia 9 dư 6
Số 2468 = 2 + 4 + 6 + 8 = 20 : 9 dư 2 và chia 3 dư 2
Vậy 2468 đều dư 2 khi chia cho 3 và 9.
Số 10^11 có dạng là 100……000 và tổng này luôn luôn chia cho 3 và 9 đều dư 1
Vậy 10^11 chia cho 3 và 9 đều dư 1
(10 ^11 nhá,ghi sai đề kìa )
Số 1546 = 1 + 5 + 4 + 6 = 16 : 9 dư 7 và chia 3 dư 1.
Vậy 1546 chia cho 9 dư 7 và chia cho 3 dư 1
Số 1527 = 1 + 5 + 2 + 7 = 15 : 9 dư 6 và chia hết cho 3.
Vậy 1527 chia hết cho 3 và chia 9 dư 6
Số 2468 = 2 + 4 + 6 + 8 = 20 : 9 dư 2 và chia 3 dư 2
Vậy 2468 đều dư 2 khi chia cho 3 và 9.
Số 10^11 có dạng là 100……000 và tổng này luôn luôn chia cho 3 và 9 đều dư 1
Vậy 10^11 chia cho 3 và 9 đều dư 1
(10 ^11 nhá,ghi sai đề kìa )
Bài 1: Tìm số dư trong phép chia 31996 cho 13
Bài 2: Chứng minh rằng (21996-2) : 31
Bài 3: Chứng minh rằng 0,3(19831983-19171917) là một số nguyên
Bài 4 : Chứng minh rằng :
a) 24n-1 chia hết cho 15 b) 270+370 chia hết cho 13
c) 19801930+19451975+1 chia hết cho 7 d) 122n+1-11n+2 chia hết cho 133
e) 22225555+55552222 chia hết cho 7
g, 6^1001 + 1 chia hết cho 7
Bài 5 : Tìm số dư trong phép chia :
a) Chia 43624362 cho 11 b) Chia 35150 cho 425 c) Chia 8! Cho 11
Bài 6 : Chứng minh rằng : 14k+24k+34k+44k không chia hết cho 5 với mọi k N
Bài 7 : Chứng minh rằng nếu n không chia hết cho 3 thì 32n+3n+1 chia hết cho13
1)Tìm số dư trong phép chia sau:
a)3100 cho 13
b)3100cho 7
c)8!cho 11
2)Chứng minh rằng:a=61000-1 và b=61001+1 đều là bội của 7
3)Tìm số dư trong phép chia 15325-1cho 9
4)Chứng tỏ 22225555+55552222 chia hết cho 7
tìm dư trong phép chia
a)2011109 +201267+6739543 cho 57
b)cho f(x)=1+x+x2+...+x100.tìm dư trong phép chia f(13) cho 51
c)C=23+34+45+...+20100 cho 17
A cho 72 biết
A=1+x+x2+x3+...+x99 với x=4