Tìm 2 số tự nhiên a và b biết: 5a=4b và BCNN(a,b)=140
tìm 2 số a,b biết 5a=4b và BCNN(a,b)=140
tìm 2 số tự nhiên a,b biết a/b bằng 4/5 và BCNN(a,b)=140
Tìm 2 số tự nhiên a và b,biết a:b= 4:5 và BCNN(a,b)=140
tìm 2 số tự nhiên a,b biết:
a)5a=13b và ƯCLN (a,b)=48
b)BCNN (a,b)=360 và ab=6480
c)a+b=40 và BCNN (a,b)=7*ƯCLN (a,b)
a.
Vì $ƯCLN(a,b)=48$ nên đặt $a=48x, b=48y$ với $(x,y)=1$. Ta có:
$5a=13b$
$\Rightarrow 5.48x=13.48y$
$\Rightarrow 5x=13y$
$\Rightarrow 5x\vdots 13; 13y\vdots 5$
$\Rightarrow x\vdots 13; y\vdots 5$. Đặt $x=13m, y=5n$. Do $(x,y)=1$ nên $(n,m)=1$.
Ta có: $5.13m=13.5n\Rightarrow m=n$. Vì $(m,n)=1$ nên $m=n=1$
$\Rightarrow x=13; y=5$
$\Rightarrow x=13.48=624; y=5.48=240$
b.
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$.
Khi đó:
$BCNN(a,b)=dxy=360$
$ab=dx.dy=d.dxy=6480$
$\Rightarrow d.360=6480$
$\Rightarrow d=18$
$\RIghtarrow xy=360:d=360:18=20$
Do $(x,y)=1$ nên $x,y$ có thể nhận các cặp giá trị là:
$(x,y)=(1,20), (4,5), (5,4), (20,1)$
Đến đây bạn thay vào tìm $a,b$ thôi.
c.
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$. Khi đó:
$BCNN(a,b)=7.ƯCLN(a,b)$
$\Rightarrow dxy=7.d$
$\Rightarrow xy=7$. Mà $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(1,7), (7,1)$
$\Rightarrow x+y=8$.
$a+b=dx+dy=40=d(x+y)=8d\Rightarrow d=5$
Nếu $(x,y)=(1,7)\Rightarrow a=dx=5.1=5; b=dy=5.7=35$
Nếu $(x,y)=(7,1)\Rightarrow a=dx=5.7=35; b=dy=5.1=5$
Tìm 2 số tự nhiên khác 0 biết rằng:
a)5a= 4a và BCNN(a,b)=140
b)a+b=128 và ƯCLN (a,b)=16
c)a+b=42 và BCNN(A,B)=72
d)a-b=7 và BCNN (a,b)=140
e)BCNN(a,b)=240 và ƯCLN(a,b)=16
f)ab=180 và và BCNN(a,b)=60
g)ab=216 và ƯCLN(a,b)=
*CHÚ Ý:ai trả lời hết mà đúng :tik và kb
ai trả lời ko hết nhưng phải đúng:không sao kb luôn
NHỚ NHA trả lời ngay còn dc tik
tìm a,b thuộc số tự nhiên biết: a-b=7 và BCNN (a;b)=140
Câu hỏi: tìm a,b thuộc số tự nhiên biết: a-b=7 và BCNN (a;b)=140
Trả lời: Do a,b thuộc số tự nhiên biết: a-b=7 và BCNN (a;b)=140
Nên ta phân tích ra -> tìm đc.
- Gọi ƯCLN (a;b) = c ⇒ a = cm ; b = cn . Sao cho ƯCLN (m;n) = 1
⇒ BCNN (a;b) = c.m.n = 140 . TH1
Mà a - b = 7 ⇒ c.m - c.n
⇒ c.(m - n) = 7 . TH2
- Từ TH1 và TH2 ta có :
c.m.n = 140
c.(m - n) = 7
⇒ c ∈ ƯC (7;140) = { 1;7 }
• Với c = 1
⇒ m.n = 140 ; m - n = 7
→ Loại.
• Với c = 7
⇒ m.n = 20 ; m - n = 1
⇒ m = 5 ; n = 4 ⇒ a = 35 ; b= 28
Vậy (a;b) thỏa mãn :
(35;28)
Tìm hai số tự nhiên a,b biết a trên b=4 trên 5 và BCNN(a,b)= 140
\(\frac{a}{b}=\frac{4}{5}\)suy ra \(a=4k,b=5k\).
\(BCNN\left(a,b\right)=BCNN\left(4k,5k\right)=20k\)
\(\Rightarrow20k=140\Leftrightarrow k=7\)
\(\Rightarrow\hept{\begin{cases}a=7.4=28\\b=7.5=35\end{cases}}\)
1/ tìm hai số tự nhiên a, b sao cho a+b=30 va BCNN (a,b)=6.ƯCLN (a,b)
2/ tìm a,b biết a/b=4/5 và BCNN (a,b)=140
tìm 2 số tự nhiên a,b biết:
a)5a=13b và ƯCLN (a,b)=48
b)BCNN (a,b)=360 và ab=6480
c)a+b=40 và BCNN (a,b)=7*ƯCLN (a,b)
Hu mình cũng dg phân vân á