Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Nguyên Quỳnh Như
Xem chi tiết
Lê Minh Anh
12 tháng 8 2016 lúc 10:51

 B= 12 - |3x + 2015| - |-3| = 12 - |3x + 2015| - 3 = 12 - 3 -  |3x + 2015| = 9 -  |3x + 2015|

Do |3x + 2015| \(\ge\)0    => -|3x + 2015|\(\le\)0    

=> 9 + (-|3x + 2015|) \(\le\)9      =>  9 -  |3x + 2015| \(\le\)9

Đẳng thức xảy ra khi:  |3x + 2015| = 0   => 3x + 2015 = 0    => 3x = 0 - 2015    => 3x = -2015   => x = \(\frac{-2015}{3}\)

Vậy giá trị lớn nhất của B là 9 khi x = \(\frac{-2015}{3}\)

Hayami Nary
Xem chi tiết
robert lewandoski
11 tháng 10 2015 lúc 21:11

12-|3x+2015|-|-3|

=12-|3x+2015|+3

=B < 9

hay Bmax=9

<=>3x+2015=0

<=>....

Vũ Nguyên Hoàng Vy
Xem chi tiết
Hoàng Ích Phúc
Xem chi tiết
Lê Tài Bảo Châu
27 tháng 6 2019 lúc 8:52

Bài 1:

Ta có: \(6.|3x-12|\ge0\forall x\)

\(\Rightarrow23+6.|3x-12|\ge23+0\forall x\)

Hay \(A\ge23\forall x\)

Dấu"=" xảy ra \(\Leftrightarrow3x-12=0\)

                        \(\Leftrightarrow x=4\)

Vậy Min A=23 \(\Leftrightarrow x=4\)

Lê Tài Bảo Châu
27 tháng 6 2019 lúc 8:54

Bài 2:

Ta có: \(5.|14-7x|\ge0\forall x\)

\(\Rightarrow-5.|14-7x|\le0\forall x\)

\(\Rightarrow2019-5.|14-7x|\le2019-0\forall x\)

Hay \(B\le2019\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow14-7x=0\)

                        \(\Leftrightarrow x=2\)

Vậy Max B=2019 \(\Leftrightarrow x=2\)

thùy nguyễn
Xem chi tiết
An Hoà
3 tháng 4 2016 lúc 8:39

Vì |y-5|>=0

=>A=|y-5|+100>=100

Dấu bằng xảy ra khi:|y-5|=0

                                    y-5=0

                                      y=5

Vậy A có giá trị nhỏ nhất là 100 khi y=5

Vì |x-2015|>=0

=>2016-|x-2015|<=2016

Dấu bằng xảy ra khi:|x-2015|=0

                                    x-2015=0

                                          x=2015

Vậy A có giá trị lớn nhất là 2016 khi x=2015

Hà Phương Linh
Xem chi tiết
Yêu nè
23 tháng 2 2020 lúc 21:29

B =2012-| 3x + 3 | - ||x+3| + 2x| 

Ta có \(\hept{\begin{cases}\left|3x+3\right|\ge0\\\left|\left|x+3\right|+2x\right|\ge0\end{cases}\forall x}\)

\(\Leftrightarrow\left|3x+3\right|+\left|\left|x+3\right|+2x\right|\ge0\forall x\)

\(\Leftrightarrow-\left|3x+3\right|-\left|\left|x+3\right|+2x\right|\le0\forall x\)

\(\Leftrightarrow2012-\left|3x+3\right|-\left|\left|x+3\right|+2x\right|\le2012\forall x\)

\(\Leftrightarrow B\le2012\forall x\).

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|3x+3\right|=0\\\left|\left|x+3\right|+2x\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+3=0\\\left|x+3\right|+2x=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x=-3\\\left|x+3\right|=-2x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\\left|-1+3\right|=-2.\left(-1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\2=2\end{cases}}\)

<=> x = 1

Vậy Max  = 2012 <=> x = 1

y ở đâu v bạn ~~?????

@@ Học tốt

Chiyuki Fujito

Khách vãng lai đã xóa
Fudo
23 tháng 2 2020 lúc 21:34

                                                                  Bài giải

Ta có : \(B=2012-\left|3x+3\right|-||x+3|+2x|=2012-\text{( }\left|3x+3\right|+||x+3|+2x|\text{ ) }\)

B đạt GTLN khi \(\text{( }\left|3x+3\right|+||x+3|+2x|\text{ ) }\)đạt GTNN

Đặt \(C=\text{( }\left|3x+3\right|+||x+3|+2x|\text{ ) }\ge|3x+3+\text{ | }x+3\text{ |}+2x|\text{ }=\left|5x+3\text{ + | }x+3\text{ | }\right|\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}x\ge-1\text{ hoặc }x\le-1\\x=-1\end{cases}}\)

Vậy Min C = 0 khi x = - 1

Vậy Max B = 2012 khi x = - 1

Khách vãng lai đã xóa
Yêu nè
23 tháng 2 2020 lúc 21:38

Haizzzzzzzzzzzz đau lắm luôn ý

Tớ sai ngày 2 dòng cuối 

buồn nhỉ

Sửa 2 dòng cuối của t đi nhé

Khách vãng lai đã xóa
Nguyễn Ngọc
Xem chi tiết
ILoveMath
4 tháng 3 2022 lúc 16:11

\(E=\left(2x-5\right)^{10}-12\ge-12\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)

Vậy \(E_{min}=-12\Leftrightarrow x=\dfrac{5}{2}\)

\(F=\left(x+5\right)^8+\left|x+5\right|+22\ge22\)

Dấu "=" xảy ra \(\Leftrightarrow x=-5\)

Vậy \(F_{min}=22\Leftrightarrow x=-5\)

\(G=17-\left|3x-2\right|\)

Dấu "=" xảy ra \(x=\dfrac{2}{3}\)

Vậy ​\(G_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)

\(K=17-\left|3x-2\right|-\left(2-3x\right)^{2020}\le17\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{2}{3}\)

Vậy \(K_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)

Lưu danh phúc
Xem chi tiết
Lưu danh phúc
4 tháng 2 2020 lúc 21:11

Tự học giúp bạn có được một gia tài
Jim Rohn – Triết lý cuộc đời

Khách vãng lai đã xóa
Alexandra Alice
Xem chi tiết